posted by user: alessio_ferone || 7634 views || tracked by 7 users: [display]

CIMB 2020 : EAIS2020 Special Session on Computational Intelligence methods in bioinformatics

FacebookTwitterLinkedInGoogle

 
When May 27, 2020 - May 29, 2020
Where Bari, Italy
Submission Deadline Feb 8, 2020
Notification Due Mar 6, 2020
Final Version Due Mar 20, 2020
Categories    bioinformatics   data mining   machine learning   fuzzy
 

Call For Papers

Aims and scope:
In modern biomedical research, high‐throughput technologies, such as the next generation sequencing, produces huge data sets. High‐throughput data are collected in the broad context of genomics, epigenomics, transcriptomics and proteomics. From these data, it is possible to explain the pathogenesis or predict the predisposition and/or the clinical outcome of several human diseases, among which psychiatric, cardiovascular, obesity, aetiology of a number of diseases such as cancer, schizophrenia, and Alzheimer, just to name a few.
The key factor to exploit such rapid growth of biological data is to develop strategies that would allow the analysis at the rate at which it’s gathered. Moreover, in many real‐life circumstances, a timely response or prediction could be vital for saving lifes. In this context, the identification of new strategies for processing and analyzing such kind of data is becoming more and more necessary since their large amount of data can sometimes represent a real obstacle to effectively identify the most relevant patterns and to build comprehensive models capable of explaining complex biological phenotypes.
The aim of the special session is to host original papers and reviews on recent research advances and the state‐of‐the‐art methods in the fields of Computational Intelligence, Machine Learning Data Mining and Distributed Computing methodologies concerning with the processing of omics data in order to shed light about the relationship between genotype and disease‐related phenotype.
Relevant topics within this context include, but are not limited to:
- Machine learning
- Sparse Coding
- Data Mining
- Fuzzy and Neuro‐Fuzzy Systems
- Probabilistic and statistical modelling
- OMICs in the context of genomics, epigenomics, transcriptomics anroteomics
- Evaluation of protein folding and/or protein‐ligand interactions (where ligands are proteins, DNA, RNA and small molecules), also in the context of genetic variation
- Identification of potential gene regulatory elements (i.e., binding oranscription factors, miRNAs, etc.)
- Analysis of common genetic variants (i.e., SNPs, HLA genotypesicrosatellites)
- Analysis of experimental data from next‐generation sequencing
- Analysis of gene expression data
- Biomedical applications
Paper Submission Guidelines
Papers should be submitted through EasyChair (https://easychair.org/conferences/?conf=ieeeeais2020) by “Computational Intelligence methods in Bioinformatics” in the Special Sessions section. See conference web site (www.eais2020.di.uniba.it) for detailed formatting instructions.
Important Dates
Paper Submission Deadline: January 10, 2020 Decision Notification: February 19, 2020 Final Paper Submission: March 20, 2020

Related Resources

MBE 2022   Special Issue: Computational methods and biomedical application for single-cell omics data analysis
ICDM 2022   22nd IEEE International Conference on Data Mining
IEEE SSCI 2023   2023 IEEE Symposium Series on Computational Intelligence
MLDM 2023   18th International Conference on Machine Learning and Data Mining
ICMLT 2023   2023 8th International Conference on Machine Learning Technologies (ICMLT 2023)
ICMLA 2022   IEEE International conference on Machine Learning and Applications
ICCEIS 2021   1st INTERNATIONAL CONFERENCE ON COMPUTATIONAL ENGINEERING AND INTELLIGENT SYSTEMS
ACM-Ei/Scopus-ITNLP 2022   2022 2nd International Conference on Information Technology and Natural Language Processing (ITNLP 2022) -EI Compendex
ISCSIC 2022   2022 6th International Symposium on Computer Science and Intelligent Control(ISCSIC 2022)
IJCNN 2023   International Joint Conference on Neural Networks