posted by organizer: fsivrikaya || 5683 views || tracked by 7 users: [display]

MoST-Rec 2019 : Workshop on Model Selection and Parameter Tuning in Recommender Systems

FacebookTwitterLinkedInGoogle

Link: http://most-rec.gt-arc.com
 
When Nov 3, 2019 - Nov 7, 2019
Where Beijing, China
Submission Deadline Aug 14, 2019
Notification Due Aug 28, 2019
Final Version Due Jun 6, 2019
Categories    machine learning   recommender systems   model selection   artificial intelligence
 

Call For Papers

The MoST-Rec Workshop, co-located with CIKM 2019 (www.cikm2019.net/), is a place for discussing and exchanging recent advances and open challenges between the Model-Selection and Parameter Tuning community and the Recommendation Systems community.

Recommender systems (RS) have attracted strong attention of the machine learning community, especially within the last decades. Researchers have developed various algorithms proven to have good performance in the laboratory environment; however, applying them to real business cases is typically more difficult.

This workshop addresses the issues of algorithm selection and parameter tuning for recommender systems. The goal is to bring together researchers from the machine learning community with the industry representatives in order to exchange information on current challenges, constraints and ideas from both domains.

List of Topics:
We are looking for contributions that explain methods, challenges and insights at the intersection of Recommender Systems (RS), Model Selection (MS) and Parameter Tuning (PT) domains. In particular, topics of solicited papers include, but are not limited to:

* Model Selection and Parameter Tuning for Recommender Systems
- Ensemble methods
- Online model selection / ensembles
- Online boosting
- Parameter tuning
- High noise model selection / tuning
- Sparsely labeled model selection / tuning
- Distributing model selection or parameter tuning
* Recommender Systems applying model selection and parameter tuning methods
- Short term temporal dynamics (Item popularity, trends)
- Long term temporal dynamics (user tastes)
- Continously changing sets of users and items
- Scenarios with sparse rewards
- Tuning of robustness, convergence, lerning-rate
- Considerations of popularity bias (in the evaluation metrics, learning procedure)

*New*: Accepted papers will be considered for inclusion in a special issue of the Springer International Journal of Data Science and Analytics (JDSA).

Submission Guidelines:
All papers must be original and not simultaneously submitted to another journal or conference. Submissions should be made through the EasyChair Conference System (https://easychair.org/my/conference?conf=mostrec2019). Papers must be formatted according to ACM SIG proceedings format and prepared as a PDF file. Both regular papers and demo/poster papers are welcome:

- Long papers: Max 8 pages
- Short papers (including demo/poster): Max 4 pages

Contact:
All questions about submissions should be emailed to most-rec@gt-arc.com.

Related Resources

OLA 2023   International Conference in Optimization and Learning
JCICE 2024   2024 International Joint Conference on Information and Communication Engineering(JCICE 2024)
RecSys 2023   Conference on Recommender Systems
IEEE Xplore-Ei/Scopus-CSPIT 2023   2023 Asia Conference on Communications, Signal Processing and Information Technology (CSPIT 2023) -EI Compendex
IEEE MOST 2024   IEEE International Conference on Mobility: Operations, Services, and Technologies (MOST) 2024
IEEE Xplore-Ei/Scopus-DMCSE 2023   2023 International Conference on Data Mining, Computing and Software Engineering (DMCSE 2023) -EI Compendex
Embedded Systems for AI-Based Health Mon 2023   Embedded Systems for AI-Based Health Monitoring in Cyber Physical Systems
ICDM 2024   24th Industrial Conference on Data Mining
A-TEST 2023   14th Workshop on Automating Test Case Design, Selection and Evaluation
CVPR 2024   The IEEE/CVF Conference on Computer Vision and Pattern Recognition