posted by user: grabus || 3168 views || tracked by 5 users: [display]

LearnAut 2019 : Learning and Automata (LearnAut) 2019 -- LICS 2019 Workshop


When Jun 23, 2019 - Jun 23, 2019
Where Vancouver, Canada
Submission Deadline Apr 6, 2019
Notification Due Apr 25, 2019
Categories    grammatical inference   theoretical computer science   logic   machine learning

Call For Papers

Learning and Automata (LearnAut) -- LICS 2019 workshop
June 23rd, Vancouver, Canada


Learning models defining recursive computations, like automata and formal grammars, are the core of the field called Grammatical Inference (GI). The expressive power of these models and the complexity of the associated computational problems are major research topics within mathematical logic and computer science, spanning the communities that the Logic in Computer Science (LICS) conference brings together. Historically, there has been little interaction between the GI and LICS communities, though recently some important results started to bridge the gap between both worlds, including applications of learning to formal verification and model checking, and (co-)algebraic formulations of automata and grammar learning algorithms.

The goal of this workshop is to bring together experts on logic who could benefit from grammatical inference tools, and researchers in grammatical inference who could find in logic and verification new fruitful applications for their methods.

We invite submissions of recent work, including preliminary research, related to the theme of the workshop. Similarly to how main machine learning conferences and workshops are organized, all accepted abstracts will be part of a poster session held during the workshop. Additionally, the Program Committee will select a subset of the abstracts for oral presentation. At least one author of each accepted abstract is expected to represent it at the workshop.

Topics of interest include (but are not limited to):

- Computational complexity of learning problems involving automata and formal languages.
- Algorithms and frameworks for learning models representing language classes inside and outside the Chomsky hierarchy, including tree and graph grammars.
- Learning problems involving models with additional structure, including numeric weights, inputs/outputs such as transducers, register automata, timed automata, Markov reward and decision processes, and semi-hidden Markov models.
- Logical and relational aspects of learning and grammatical inference.
- Theoretical studies of learnable classes of languages/representations.
- Relations between automata and recurrent neural networks.
- Active learning of finite state machines and formal languages.
- Methods for estimating probability distributions over strings, trees, graphs, or any data used as input for symbolic models.
- Applications of learning to formal verification and (statistical) model checking.
- Metrics and other error measures between automata or formal languages.

** Invited speakers **

Lise Getoor (UC Santa Cruz)
Prakash Panangaden (McGill University)
Nils Jansen (Radboud University) (to be confirmed)

** Submission instructions **

Submissions in the form of extended abstracts must be at most 8 single-column pages
long at most (plus at most four for bibliography and possible appendixes) and
must be submitted in the JMLR/PMLR format. The LaTeX style file
is available here:

We do accept submissions of work recently published or currently under

- Submission url:
- Submission deadline: March 30th
- Notification of acceptance: April 25th
- Registration: TBD

** Program Committee **

Dana Angluin (Yale University)
Borja Balle (Amazon Research Cambridge)
Leonor Becerra-Bonache (Université de Saint-Etienne)
Alexander Clark (King’s College London)
François Denis (Aix-Marseille Université)
Kousha Etessami (University of Edinburgh)
Matthias Gallé (Naver Labs Europe)
Colin de la Higuera (Nantes University)
Falk Howar (TU Clausthal)
Makoto Kanazawa (Hosei University)
Ariadna Quattoni (Naver Labs Europe)
Alexandra Silva (University College of London)
Frits Vaandrager (Radboud University)

** Organizers **

Remi Eyraud (Aix-Marseille Université)
Tobias Kappé (University College London)
Guillaume Rabusseau (Université de Montréal / Mila)
Matteo Sammartino (University College London)

Related Resources

Federated Learning in IOT Cybersecurity 2021   PeerJ Computer Science - Federated Learning for Cybersecurity in Internet of Things
CVPR 2022   Computer Vision and Pattern Recognition
CFDSP 2022   2022 International Conference on Frontiers of Digital Signal Processing (CFDSP 2022)
MLDM 2022   18th International Conference on Machine Learning and Data Mining
JCRAI 2021-Ei Compendex & Scopus 2021   2021 International Joint Conference on Robotics and Artificial Intelligence (JCRAI 2021)
FAIML 2022   2022 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML 2022)
ICALP 2021   International Colloquium on Automata, Languages and Programming
ICADCML 2022   3rd International Conference on Advances in Distributed Computing and Machine Learning - 2022
AISTATS 2022   25th International Conference on Artificial Intelligence and Statistics
blockchain_ml_iot 2021   Network and Electronics (MDPI) Joint Special Issue - Blockchain and Machine Learning for IoT: Security and Privacy Challenges