posted by organizer: wos || 1529 views || tracked by 2 users: [display]

FastPath 2019 : International Workshop on Performance Analysis of Machine Learning Systems

FacebookTwitterLinkedInGoogle

Link: https://tinyurl.com/2019-FastPath
 
When Mar 24, 2019 - Mar 24, 2019
Where Madison, Wisconsin, USA
Submission Deadline Feb 8, 2019
Notification Due Feb 22, 2019
Final Version Due Mar 24, 2019
Categories    hardware   machine learning   performance evaluation   software
 

Call For Papers

FastPath 2019 brings together researchers and practitioners involved in cross-stack hardware/software performance analysis, modeling, and evaluation for efficient machine learning systems. Machine learning demands tremendous amount of computing. Current machine learning systems are diverse, including cellphones, high performance computing systems, database systems, self-driving cars, robotics, and in-home appliances. Many machine-learning systems have customized hardware and/or software. The types and components of such systems vary, but a partial list includes traditional CPUs assisted with accelerators (ASICs, FPGAs, GPUs), memory accelerators, I/O accelerators, hybrid systems, converged infrastructure, and IT appliances. Designing efficient machine learning systems poses several challenges.
These include distributed training on big data, hyper-parameter tuning for models, emerging accelerators, fast I/O for random inputs, approximate computing for training and inference, programming models for a diverse machine-learning workloads, high-bandwidth interconnect, efficient mapping of processing logic on hardware, and cross system stack performance optimization. Emerging infrastructure supporting big data analytics, cognitive computing, large-scale machine learning, mobile computing, and internet-of-things, exemplify system designs optimized for machine learning at large.

Topics
FastPath seeks to facilitate the exchange of ideas on performance analysis and evaluation of machine learning/AI systems and seeks papers on a wide range of topics including, but not limited to:
Workload characterization, performance modeling and profiling of machine
learning applications
GPUs, FPGAs, ASIC accelerators
Memory, I/O, storage, network accelerators
Hardware/software co-design
Efficient machine learning algorithms
Approximate computing in machine learning
Power/Energy and learning acceleration
Software, library, and runtime for machine learning systems
Workload scheduling and orchestration
Machine learning in cloud systems
Large-scale machine learning systems
Emerging intelligent/cognitive systems
Converged/integrated infrastructure
Machine learning systems for specific domains, e.g., financial, biological, education, commerce, healthcare

Submission
FastPath 2019 Call for Papers is available here.
Prospective authors must submit a 2-4 page extended abstract electronically at:
https://easychair.org/conferences/?conf=fastpath2019
Authors of selected abstracts will be invited to give a 30-min presentation at the workshop.

Key Dates
Submission: February 8, 2019
Notification: February 22, 2019
Final Materials / Workshop: March 24, 2019

Organizers
General Chair: Erik Altman (IBM)
Program Committee Chairs: Zehra Sura (IBM), Parijat Dube (IBM)

Related Resources

ICDM 2021   21th Industrial Conference on Data Mining
DLRS 2021   Call for Papers: Topical Issue on Deep Learning for Recommender Systems
MLDM 2021   17th International Conference on Machine Learning and Data Mining
AICA 2020   O'Reilly AI Conference San Jose
SCOPUS-PRIS 2021   3rd International Conference on Pattern Recognition and Intelligent Systems (PRIS 2021)
NLPCL 2021   2nd International Conference on Natural Language and Computational Linguistics
SI-DAMLE 2020   Special Issue on Data Analytics and Machine Learning in Education
ECIR 2021   European Conference on Information Retrieval
Fintech 2020   Sustainaility (Q2): Fintech: Recent Advancements in Modern Techniques, Methods and Real-World Solutions
ML4Music 2021   Special Issue: Machine Learning Applied to Music/Audio Signal Processing (Electronics)