posted by organizer: wos || 8361 views || tracked by 4 users: [display]

ScaDL 2019 : Scalable Deep Learning over Parallel and Distributed Infrastructures

FacebookTwitterLinkedInGoogle

Link: https://sites.google.com/site/scadlworkshop/
 
When May 24, 2019 - May 24, 2019
Where Rio de Janeiro
Submission Deadline Feb 18, 2019
Notification Due Feb 25, 2019
Final Version Due Mar 15, 2019
Categories    distributed computing   parallel computing   deep learning   system performance
 

Call For Papers

In this workshop we solicit research papers focused on distributed deep learning aiming to achieve efficiency and scalability for deep learning jobs over distributed and parallel systems. Papers focusing both on algorithms as well as systems are welcome. We invite authors to submit papers on topics including but not limited to:

Deep learning on HPC systems
Deep learning for edge devices
Model-parallel and data-parallel techniques
Asynchronous SGD for Training DNNs
Communication-Efficient Training of DNNs
Model/data/gradient compression
Learning in Resource constrained environments
Coding Techniques for Straggler Mitigation
Elasticity for deep learning jobs/spot market enablement
Hyper-parameter tuning for deep learning jobs
Hardware Acceleration for Deep Learning
Scalability of deep learning jobs on large number of nodes
Deep learning on heterogeneous infrastructure
Efficient and Scalable Inference
Data storage/access in shared networks for deep learning jobs

Author Instructions
Submitted manuscripts may not exceed ten (10) single-spaced double-column pages using 10-point size font on 8.5x11 inch pages (IEEE conference style), including figures, tables, and references. The submitted manuscripts should include author names and affiliations. The IEEE conference style templates for MS Word and LaTeX provided by IEEE eXpress Conference Publishing are available for download. See the latest versions at https://www.ieee.org/conferences/publishing/templates.html

Use the following link for submissions: https://easychair.org/conferences/?conf=scadl2019

Organizing Committee
General Chairs
Gauri Joshi, Carnegie Mellon University (gaurij@andrew.cmu.edu)
Ashish Verma, IBM Research AI (ashish.verma1@ibm.com)

Program Chairs
Yogish Sabharwal, IBM Research AI
Parijat Dube, IBM Research AI

Local Chair
Eduardo Rodrigues, IBM Research

Steering Committee
Vijay K. Garg, University of Texas at Austin
Vinod Muthuswamy, IBM Research AI

Technical Program Committee
Alvaro Coutinho - Federal University of Rio de Janeiro
Dimitris Papailiopoulos, University of of Wisconsin-Madison
Esteban Meneses, Costa Rica Institute of Technology
Kangwook Lee, KAIST
Li Zhang, IBM Research
Lydia Chen, TU Delft
Philippe Navaux, University of Rio Grande do Sul
Rahul Garg, Indian Institute of Technology Delhi
Vikas Sindhwani, Google Brain
Wei Zhang, IBM Research
Xiangru Lian, University of Rochester

Key Dates
Paper Submission January 25, 2019
Acceptance Notification February 25, 2019
Camera-ready due March 15, 2019

Related Resources

ScaDL 2020   Scalable Deep Learning over Parallel And Distributed Infrastructures
IEEE-CVIV 2020   2020 2nd International Conference on Advances in Computer Vision, Image and Virtualization (CVIV 2020)
TPDS-SS-AI 2020   IEEE Transactions on Parallel and Distributed Systems (IEEE TPDS) Special Section on Parallel and Distributed Computing Techniques for AI, ML and DL
MNLP 2020   4th IEEE Conference on Machine Learning and Natural Language Processing
AICA 2020   O'Reilly AI Conference San Jose
MAAIDL 2020   Springer Book 'Malware Analysis using Artificial Intelligence and Deep Learning'
AI ML Big Data Vision 2020   IEEE COINS | Artificial Intelligence | Machine Learning | Deep Learning | Machine Vision | Big Data Analytics | Video Analytics | Speech Recognition | NLP
SBAC-PAD 2020   International Symposium on Computer Architecture and High Performance Computing
ICMLC--ACM, Ei and Scopus 2020   ACM--2020 12th International Conference on Machine Learning and Computing (ICMLC 2020)--SCOPUS, Ei Compendex
AICI 2021   The Second International Conference on Artificial Intelligence and Computational Intelligence (AICI 2021)