posted by organizer: Aholzinger || 1386 views || tracked by 4 users: [display]

CfP Journal (SCI IF=2,5) 2019 : Springer/Nature BMC MIDM Explainable AI in Medical Informatics and Decision Support

FacebookTwitterLinkedInGoogle

Link: https://hci-kdd.org/special-issue-explainable-ai-medical-informatics-decision-making/
 
When N/A
Where N/A
Submission Deadline Mar 30, 2019
Categories    explainability   explainable ai   causality   transparent machine learning
 

Call For Papers

Special Collection Springer/Nature BMC Medical Informatics and Decision Support
Full open access SCI-IF = 2,5

Explainable AI in Medical Informatics and Decision Support
Call for papers

Based on a successful workshop on explainable AI during the Cross Domain for Machine Learning and Knowledge Extraction (CD-MAKE) 2018 conference, we launch this call for a special issue at BMC Medical Informatics and Decision Making, with the possibility to present the papers at the next session on explainable AI during the CD-MAKE 2019 conference in Kent (Canterbury, UK) at the end of August 2019.

We want to inspire cross-domain experts interested in artificial intelligence/machine learning to stimulate research, engineering and evaluation in, around and for explainable AI - towards making machine decisions transparent, re-enactive, comprehensible, interpretable, thus explainable, re-traceable and reproducible; the latter is the cornerstone of scientific research per se!

We foster cross-disciplinary and interdisciplinary work including but not limited to:

Novel methods, algorithms, tools for supporting explainable AI
Proof-of-concepts and demonstrators of how to integrate explainable AI into workflows
Frameworks, architectures, algorithms and tools to support post-hoc and ante-hoc explainability and causality machine learning
Theoretical approaches of explainability ("What is a good explanation?")
Towards argumentation theories of explanation and issues of cognition
Comparison Human intelligence vs. Artificial Intelligence (HCI -- KDD)
Interactive machine learning with human(s)-in-the-loop (crowd intelligence)
Explanation User Interfaces and Human-Computer Interaction (HCI) for explainable AI
Novel Intelligent User Interfaces and affective computing approaches
Fairness, accountability and trust
Ethical aspects, law and social responsibility
Business aspects of explainable AI
Self-explanatory agents and decision support systems
Explanation agents and recommender systems
Combination of statistical learning approaches with large knowledge repositories (ontologies)

The grand goal of future explainable AI is to make results understandable and transparent and to answer questions of how and why a result was achieved. In fact: “Can we explain how and why a specific result was achieved by an algorithm?”

Submission for this special issue is open until 30 March 2019. The special issue is overseen by Section Editor Andreas Holzinger.


Related Resources

META-MACHINE-SYNERGISTIC 2020   Metaheuristic schemes and Machine learning techniques: A synergistic perspective. (Applied Mathematical Modelling Elsevier IF=2.841, Q1)
IEEE TDSC - XAI-CTI 2020   IEEE Transactions on Dependable and Secure Computing Special Issue on Explainable AI for Cyber Threat Intelligence (XAI-CTI) Applications
SI on IoT for Fighting COVID-19   CFP - Special Issue on IoT for Fighting COVID-19 [PMC, Elsevier]
IWSMAI 2021   CFP: The 2nd International Workshop on Statistical Methods and Artificial Intelligence
EPTvS 2021   CFP: Ethics and Politics of TV Series
TRA 2021   CFP Extension to December 2020: THE RISE OF ASIA 2021: 60 years after Belgrade, what Non-Alignment in a Multipolar World and for a Global Future?
SpAc 2021   [CfP] Heidelberg Center for American Studies Annual Spring Academy Conference
JBHI-SI 2021   CFP: JBHI - Special Issue on Enabling Technologies for Next Generation Telehealthcare - IF: 5.223
IJFMA 2021   CFP - International Journal of Film and Media Arts
DSAA 2021   CFP: Special Issue on Foundations of Data Science - Machine Learning Journal