posted by user: lixt || 802 views || tracked by 1 users: [display]

EDL 2019 : Evolutionary Deep Learning in Cancer Diagnoses

FacebookTwitterLinkedInGoogle

 
When N/A
Where N/A
Abstract Registration Due Nov 16, 2018
Submission Deadline May 13, 2019
 

Call For Papers

https://www.frontiersin.org/research-topics/8553/evolutionary-deep-learning-in-cancer-diagnoses

Recently, much of the field of cancer diagnosis has been focused on developing new computational methods. However, most of these methods suffer from lower accuracy, experimental noise, high dimensionality, and poor interpretability. These methods still require significant improvement, so that can meet the need of real-world clinical diagnosis.

Machine learning algorithms have pushed the boundaries for numerous problems in areas such as computer vision, natural language processing, and audio processing. Recent cancer research has also focused on machine learning, which has attracted attention from both the academic research and commercial application communities. In a different yet often closely related arena, evolutionary algorithms use a population-based approach in which more than one solution participates in an iteration and evolves a new population of solutions in each iteration. Meanwhile, evolutionary algorithms have successfully been employed to increase the performance of machine learning methods significantly.

With this perspective, this Research Topic will collect cutting-edge research in all aspects of evolutionary algorithm and machine learning for cancer diagnoses including experimental and theoretical research and real-world applications to promote research, sharing, and development.

We welcome all types of articles accepted within the Bioinformatics and Computational Biology speciality section (please see here ). Potential topics include, but are not limited to the following:
• Deep learning for cancer diagnoses,
• Perspectives on evolutionary machine learning,
• Multiobjective cancer diagnoses,
• Mathematical modelling of cancer diagnoses,
• Conventional machine learning methods for cancer diagnoses
• Unsupervised cancer diagnoses


Keywords: Cancer Diagnoses, Evolutionary Algorithm, Multiobjective Optimization, Evolutionary Deep Learning, Evolutionary Machine Learning


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

https://www.frontiersin.org/research-topics/8553/evolutionary-deep-learning-in-cancer-diagnoses

Related Resources

Special Issue of TEVC 2020   Evolutionary Computation Meets Deep Learning
MNLP 2020   4th IEEE Conference on Machine Learning and Natural Language Processing
AICA 2020   O'Reilly AI Conference San Jose
MAAIDL 2020   Springer Book 'Malware Analysis using Artificial Intelligence and Deep Learning'
DLfor5GIoT 2020   Deep Learning for 5G IoT Systems
SI_Wiley_ITL_DLFuture 2020   Special Issue of Wiley ITL - Deep Learning for Future Smart Cities
DATA 2020   AI and Big Data in Cancer: From Innovation to Impact
ICDM 2020   20th IEEE International Conference on Data Mining
IEEE AIML4COINS 2020   IEEE AIML4COINS2020 | Artificial Intelligence | Machine Learning | Deep Learning | Machine Vision | Big Data Analytics | Video Analytics | Speech Recognition | NLP
WSPML 2020   2020 2nd International Workshop on Signal Processing and Machine Learning (WSPML 2020)