posted by organizer: xiaoboshen || 5048 views || tracked by 6 users: [display]

ACML-MoL 2018 : ACML 2018 Workshop on Multi-output Learning


When Nov 14, 2018 - Nov 14, 2018
Where Beijing, China
Submission Deadline Aug 20, 2018
Notification Due Oct 1, 2018
Categories    machine learning   artificial intelligence   data mining   computer science

Call For Papers

Motivation and Objectives
Multi-output learning [1][13] aims to predict multiple outputs for an input, where the output values are characterized by diverse data types, such as binary, nominal, ordinal and real-valued variables. Such learning tasks arise in a variety of real-world applications, ranging from document classification, computer emulation, sensor network analysis, concept-based information retrieval, human action/causal induction, to video analysis, image annotation/retrieval, gene function prediction and brain science. Due to its popularity in applications, multi-output learning has also been widely explored in machine learning community, such as multi-label/multi-class classification [2][8], multi-target regression, hierarchical classification with class taxonomies, label sequence learning, sequence alignment learning, and supervised grammar learning, and so on.

The theoretical properties of existing approaches for multi-output data are still not well understood. This triggers practitioners to develop novel methodologies [5][9][11] and theories [3] to deeply understand multi-output learning tasks. Moreover, the emerging trends of ultrahigh input and output dimensionality [7], and the complexly structured objects [4], lead to formidable challenges for multi-output learning. Therefore, it is imperative to propose practical mechanisms and efficient optimization algorithms [8][10][12] for large-scale applications. Deep learning has gained much popularity in today’s research, and has been developed in recent years to deal with multi-label and multi-class classification problems. However, it remains non-trivial for practitioners to design novel deep neural networks [6] that are appropriate for more comprehensive multi-output learning domains.

Topics of Interest
Interested topics include, but are not limited to:

Novel deep learning methods for multi-output learning tasks.
Novel modellings for multi-output learning from new perspectives.
Statistical theory analysis for multiple output learning.
Large-scale optimization algorithms for multiple output learning.
Sparse representation learning for large-scale multiple output learning.
Active learning for multi-output data.
Online learning for multi-output data.
Metric learning for multi-output data.
Multi-output learning with noisy data.
Multi-output learning with imbalanced data.
New applications.

Submission Guidelines
Workshop submissions and camera ready versions will be handled by Microsoft CMT. Click for submission.

Papers should be formatted according to the ACML formatting instructions for the Conference Track. The submissions with 2 pages will be considered for the poster, while submissions with at least 6 pages will be considered for the oral presentation. The selective oral papers will be invited for IEEE TNNLS Special Issue on "Structured Multi-output Learning: Modelling, Algorithm, Theory and Applications" (

ACML-MoL is a non-archival venue and there will be no published proceedings. The papers will be posted on the workshop website. It will be possible to submit to other conferences and journals both in parallel to and after ACML-MoL'18. Besides, we also welcome submissions to ACML-MoL that are under review at other conferences and workshops.

At least one author from each accepted paper must register for the workshop. Please see the ACML 2018 Website for information about accommodation and registration.

Tentative Schedule
8:50 - 9:00 Introduction
9:00 - 10:00 Invited Keynote Talk
===10:00-10:30 Morning tea===
10:30 - 10:55 Paper presentation
10:55 - 11:20 Paper presentation
11:20 - 11:35 Paper presentation
===11:35 - 11:50 Panel discussion===
11:50 - 12:05 Paper presentation
12:05 - 12:20 Paper presentation
12:20 - 12:35 Paper presentation
===12:35 - 12:50 Panel discussion===

Important Dates
Submission: 20 Sep, 2018.
Notification: 01 Oct, 2018.
Workshop: 14 Nov, 2018.

Weiwei Liu, University of New South Wales, Australia.
Xiaobo Shen, Nanyang Technological University, Singapore.
Yew-Soon Ong, Nanyang Technological University, Singapore.
Ivor W. Tsang, University of Technology Sydney, Australia.
Chen Gong, Nanjing University of Science and Technology, China.

[1] Mauricio A. Álvarez, Lorenzo Rosasco, Neil D. Lawrence, Kernels for Vector-Valued Functions: A Review, Foundations and Trends in Machine Learning, 2012.
[2] Weiwei Liu, Ivor W. Tsang, Large Margin Metric Learning for Multi-Label Prediction, AAAI, 2015.
[3] Weiwei Liu, Ivor W. Tsang, On the Optimality of Classifier Chain for Multi-label Classification, NIPS, 2015.
[4] Mingkui Tan, Qinfeng Shi, Anton van den Hengel, Chunhua Shen, Junbin Gao, Fuyuan Hu, Zhen Zhang, Learning graph structure for multi-label image classification via clique generation, CVPR, 2015.
[5] Chen Gong, Dacheng Tao, Jie Yang, Wei Liu, Teaching-to-Learn and Learning-to-Teach for Multi-label Propagation, AAAI, 2016.
[6] Moustapha Cissé, Maruan Al-Shedivat, Samy Bengio, ADIOS: Architectures Deep In Output Space, ICML, 2017.
[7] Weiwei Liu, Ivor W. Tsang, Making Decision Trees Feasible in Ultrahigh Feature and Label Dimensions, JMLR, 2017.
[8] Weiwei Liu, Ivor W. Tsang, Klaus-Robert Müller, An Easy-to-hard Learning Paradigm for Multiple Classes and Multiple Labels, JMLR, 2017.
[9] Chen Gong, Tongliang Liu, Yuanyan Tang, Jian Yang, Jie Yang, Dacheng Tao, A Regularization Approach for Instance-Based Superset Label Learning, TCYB, 2018.
[10] Xiaobo Shen, Weiwei Liu, Ivor W. Tsang, Quan-Sen Sun, Yew-Soon Ong, Compact Multi-Label Learning, AAAI, 2018.
[11] Xiaobo Shen, Weiwei Liu, Ivor W. Tsang, Quan-Sen Sun, Yew-Soon Ong, Multilabel Prediction via Cross-View Search, TNNLS, 2018.
[12] Xiaobo Shen, Weiwei Liu, Yong Luo, Yew-Soon Ong, Ivor W. Tsang, Deep Discrete Prototype Multilabel Learning, IJCAI, 2018.
[13] Weiwei Liu, Donna Xu, Ivor Tsang, Wenjie Zhang, Metric Learning for Multi-output Tasks, TPAMI, 2018.

Related Resources

ICMLA 2021   20th IEEE International Conference on Machine Learning and Applications
IARCE 2021-Ei Compendex & Scopus 2021   2021 5th International Conference on Industrial Automation, Robotics and Control Engineering (IARCE 2021)
ICAART 2021   13th International Conference on Agents and Artificial Intelligence
CHEME 2021   5th International Conference on Chemical Engineering
FAIML 2021   2021 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML 2021)
CSEIT 2021   8th International Conference on Computer Science, Engineering and Information Technology
EXTRAAMAS 2021   EXplainable and TRAnsparent AI and Multi-Agent Systems
CFMAI 2021   2021 3rd International Conference on Frontiers of Mathematics and Artificial Intelligence (CFMAI 2021)
JAAMAS MODeM SI 2021   Special Issue of JAAMAS on Multi-Objective Decision Making (MODeM)
ML_BDA 2021   Special Issue on Machine Learning Technologies for Big Data Analytics