posted by user: nunompmoniz || 3961 views || tracked by 4 users: [display]

LIDTA 2018 : 2nd International Workshop on Learning with Imbalanced Domains - Theory and Applications (@ECML/PKDD 2018)


When Sep 10, 2018 - Sep 14, 2018
Where Dublin, Ireland
Submission Deadline Jul 9, 2018
Notification Due Jul 23, 2018
Final Version Due Aug 6, 2018
Categories    machine learning   imbalanced learning   data science   data mining

Call For Papers

*Apologies for multi-posting*


LIDTA 2018, co-located with ECML/PKDD 2018
2nd International Workshop on Learning with Imbalanced Domains: Theory and Applications
10-14 September, Dublin, Ireland



The proceedings of this workshop will be published as a volume of the Proceedings of Machine Learning Research (PMLR) series.



Submission Deadline (EXTENDED): Monday, July 9, 2018
Notification of Acceptance: Monday, July 23, 2018
Camera-ready Deadline: Monday, August 6, 2018

ECML/PKDD 2018: 10th-14th September, 2018


Many real-world data-mining applications involve obtaining and evaluating predictive models using data sets with strongly imbalanced distributions of the target variable. Frequently, the least-common values are associated with events that are highly relevant for end users. This problem has been thoroughly studied in the last decade with a specific focus on classification tasks. However, the research community has started to address this problem within other contexts such as regression, ordinal classification, multi-label classification, multi-instance learning, data streams and time series forecasting. It is now recognised that imbalanced domains are a broader and important problem posing relevant challenges for both supervised and unsupervised learning tasks, in an increasing number of real world applications.

Tackling issues raised by imbalanced domains is crucial to both academia and industry. To researchers, it is an opportunity to develop more adaptable and robust systems/approaches for very complex tasks. For the industry, these tasks are in fact those that many already face today. Examples include the ability to prevent fraud, to anticipate catastrophes, and in general to enable more preemptive actions.

This workshop+tutorial is focused on providing a significant contribution to the problem of learning with imbalanced domains, and to increasing the interest and the contributions to solving some of its challenges. The tutorial component is designed to target researchers and professionals who have a recent interest on the subject, but also those who have previous knowledge and experience concerning this problem. The workshop component invites inter-disciplinary contributions to tackle the problems that many real-world domains face nowadays. With the growing attention that this problem has been collecting, it is important to promote its further development in order to tackle its theoretical and application challenges.


The research topics of interest to LIDTA'2018 workshop include (but are not limited to) the following:

*** Foundations of learning in imbalanced domains
Probabilistic and statistical models
New knowledge discovery theories and models
Understanding the nature of learning difficulties embedded in imbalanced data
Deep learning with imbalanced data
Handling imbalanced big data
One-class learning
Learning with non i.i.d. data
New approaches for data pre-processing (e.g. resampling strategies)
Post-processing approaches
Sampling approaches
Feature selection and feature transformation
Evaluation in imbalanced domains

*** Knowledge discovery and machine learning in imbalanced domains
Classification, ordinal classification
Data streams and time series forecasting
Adaptive learning and algorithm-level approaches
Multi-label, multi-instance, sequence and association rules mining
Active learning
Spatial and spatio-temporal learning

*** Applications in imbalanced domains
Fraud detection (e.g. finance, credit and online banking)
Anomaly detection (e.g. industry, intrusion detection)
Health applications
Environmental applications (e.g. meteorology, biology)
Social media applications (e.g. popularity prediction, recommender systems)
Real world applications (e.g. oil spill detection)
Case studies



For each accepted paper, a presentation slot of 20 minutes is provided.

* The maximum length for papers is 14 pages. Papers not respecting such limit will be rejected.
* All submissions must be written in English and follow the PMLR format. Instructions for authors and style files may be found in
* All submissions will be reviewed by the Program Committee using a double-blind method. As such, it is required that no personal information or reference to the authors should be introduced in the submitted paper.
* Papers that have already been accepted or are currently under review for other workshops, conferences, or journals will not be considered.
* Submissions will be evaluated concerning their technical quality, relevance, significance, originality and clarity.
* At least one author of each accepted paper must attend the workshop and present the paper.

To submit a paper, authors must use the on-line submission system hosted in EasyChair:



All accepted papers will be included in the workshop proceedings, published as a volume in Proceedings of Machine Learning Research (
Additionally, based on the success of the workshop, authors of selected papers will be invited to submit extended versions of their manuscripts to a premier journal concerning the topics of this workshop.



Gustavo Batista, Universidade de São Paulo
Colin Bellinger, University of Alberta
Seppe Vanden Broucke, Katholieke Universiteit Leuven
Alberto Cano, Virginia Commonwealth University
Inês Dutra, DCC - Faculty of Sciences, University of Porto
Tom Fawcett, Apple
Mikel Galar, Universidad Pública de Navarra
Salvador García, Granada University
Francisco Herrera, Granada University
Jose Hernandez-Orallo, Universitat Politecnica de Valencia
Ronaldo Prati, Universidade Federal do ABC
Rita Ribeiro, DCC - Faculty of Sciences, University of Porto
José Antonio Saez, University of Salamanca
Shengli Victor Sheng, University of Central Arkansas
Marina Sokolova, University of Ottawa
Jerzy Stefanowski, Poznan University of Technology
Isaac Triguero Velázquez, University of Nottingham
Anibal R. Figueiras-Vidal, Universidad Carlos III de Madrid
Shuo Wang, University of Birmingham
Michal Wozniak, Wroclaw University of Science and Technology



Luis Torgo | Dalhousie University
Stan Matwin | Dalhousie University
Nathalie Japkowicz | American University
Bartosz Krawczyk | Virginia Commonwealth University
Nuno Moniz | University of Porto, LIAAD - INESC TEC
Paula Branco | University of Porto, LIAAD - INESC TEC

Related Resources

LIDTA 2021   3rd International Workshop on Learning with Imbalanced Domains: Theory and Applications
JCRAI 2021-Ei Compendex & Scopus 2021   2021 International Joint Conference on Robotics and Artificial Intelligence (JCRAI 2021)
Bioinspired Intelligent Algorithms 2021   Special Issue Bioinspired Intelligent Algorithms for Optimization, Modeling and Control: Theory and Applications
IJCAI 2022   31st International Joint Conference on Artificial Intelligence
MLDM 2022   18th International Conference on Machine Learning and Data Mining
ICoCTA 2021   2021 2nd International Conference on Control Theory and Applications (ICoCTA 2021)
CVPR 2022   Computer Vision and Pattern Recognition
CFDSP 2022   2022 International Conference on Frontiers of Digital Signal Processing (CFDSP 2022)
CCTA 2022   6th IEEE Conference on Control Technology and Applications
DASFAA 2022   Database Systems for Advanced Applications