posted by organizer: shaoming533 || 2136 views || tracked by 6 users: [display]

2nd BDTL Workshop 2017 : 2nd International Workshop on Big Data Transfer Learning in conjunction with IEEE BigData Conference 2017

FacebookTwitterLinkedInGoogle

Link: http://www.cis.umassd.edu/~mshao/BDTL2017/index.html
 
When Dec 11, 2017 - Dec 11, 2017
Where Boston MA, USA
Submission Deadline Oct 10, 2017
Notification Due Nov 1, 2017
Final Version Due Nov 15, 2017
Categories    transfer learning   machine learning   healthcare informatics   big data
 

Call For Papers

2nd International Workshop on Big Data Transfer Learning (BDTL) in Conjunction with IEEE BigData Conference 2017
-- Automatic Knowledge Mining and Transfer for Digital Healthcare

**Website**
http://www.cis.umassd.edu/~mshao/BDTL2017/index.html

**Submission**
http://www.cis.umassd.edu/~mshao/BDTL2017/submission.html

**Time**: Dec. 11th, 2017
**Location**: Boston MA, USA

**Important Date**
Oct 10, 2017: Due date for full workshop papers submission
Nov 1, 2017: Notification of paper acceptance to authors
Nov 15, 2017: Camera-ready of accepted papers
Dec 11, 2017: Workshops

The International Workshop on Big Data Transfer Learning (BDTL) is a serial workshop ever since 2016. The previous workshop in conjunction with IEEE BigData 2016 focused on the topic of Big Data Transfer Learning and Text Mining. This year, the one-day workshop in conjunction with IEEE BigData 2017 will provide a focused international forum to bring together researchers and research groups to review the status of transfer learning and knowledge mining, to exploit innovative knowledge transfer methodology given enormous weakly labeled/multi-source/multi-view/multimodal healthcare data for disease recognition/prediction, intelligent auxiliary diagnosis and emerging applications, and to explore future directions particularly in fields of increasing popularity such as deep learning, smart sensors and networks, wireless healthcare. The workshop will consist of one to two invited talks together with peer-reviewed regular papers (oral and poster). Original high-quality papers are solicited on a wide range of topics including:

* New perspectives, concepts, or theories on big data transfer learning and knowledge mining
* Big data transfer learning that works on multimodality, multi-source, latent domains, or multi-view healthcare data
* Development of analytics tools for emerging and profound digital healthcare problems
* Comparisons/survey of state-of-the-art analytics tools in health informatics
* Deep learning, representation learning and convolutional neural networks for big data analytics in digital healthcare
* Frontier label-free learning methodology for digital healthcare and health informatics, e.g., one-shot learning, self-taught learning, generative adversarial networks
* Wireless healthcare, smart sensor networks, wearable devices in big data analytics and digital healthcare
* New datasets, benchmarks, and open-source software for big data analytics in digital healthcare

Related Resources

ICMLA 2019   18th IEEE International Conference on Machine Learning and Applications
ICCV 2019   International Conference on Computer Vision
IEEE BigData 2019   IEEE International Conference on Big Data
ICDMML 2019   【ACM ICPS EI SCOPUS】2019 International Conference on Data Mining and Machine Learning
ICBDACI 2019   2nd International Conference on Big Data Analytics And Computational Intelligence
PerFoT 2019   2019 International Workshop on Pervasive Flow of Things (Co-located with IEEE PerCom 2019)
Journal Special Issue 2019   Machine Learning on Scientific Data and Information
CAIP 2019   Computer Analysis of Images and Patterns
ICSESS 2019   2019 10th IEEE International Conference on Software Engineering and Service Science
UAI 2019   Conference on Uncertainty in Artificial Intelligence