posted by organizer: shaoming533 || 3594 views || tracked by 6 users: [display]

2nd BDTL Workshop 2017 : 2nd International Workshop on Big Data Transfer Learning in conjunction with IEEE BigData Conference 2017

FacebookTwitterLinkedInGoogle

Link: http://www.cis.umassd.edu/~mshao/BDTL2017/index.html
 
When Dec 11, 2017 - Dec 11, 2017
Where Boston MA, USA
Submission Deadline Oct 10, 2017
Notification Due Nov 1, 2017
Final Version Due Nov 15, 2017
Categories    transfer learning   machine learning   healthcare informatics   big data
 

Call For Papers

2nd International Workshop on Big Data Transfer Learning (BDTL) in Conjunction with IEEE BigData Conference 2017
-- Automatic Knowledge Mining and Transfer for Digital Healthcare

**Website**
http://www.cis.umassd.edu/~mshao/BDTL2017/index.html

**Submission**
http://www.cis.umassd.edu/~mshao/BDTL2017/submission.html

**Time**: Dec. 11th, 2017
**Location**: Boston MA, USA

**Important Date**
Oct 10, 2017: Due date for full workshop papers submission
Nov 1, 2017: Notification of paper acceptance to authors
Nov 15, 2017: Camera-ready of accepted papers
Dec 11, 2017: Workshops

The International Workshop on Big Data Transfer Learning (BDTL) is a serial workshop ever since 2016. The previous workshop in conjunction with IEEE BigData 2016 focused on the topic of Big Data Transfer Learning and Text Mining. This year, the one-day workshop in conjunction with IEEE BigData 2017 will provide a focused international forum to bring together researchers and research groups to review the status of transfer learning and knowledge mining, to exploit innovative knowledge transfer methodology given enormous weakly labeled/multi-source/multi-view/multimodal healthcare data for disease recognition/prediction, intelligent auxiliary diagnosis and emerging applications, and to explore future directions particularly in fields of increasing popularity such as deep learning, smart sensors and networks, wireless healthcare. The workshop will consist of one to two invited talks together with peer-reviewed regular papers (oral and poster). Original high-quality papers are solicited on a wide range of topics including:

* New perspectives, concepts, or theories on big data transfer learning and knowledge mining
* Big data transfer learning that works on multimodality, multi-source, latent domains, or multi-view healthcare data
* Development of analytics tools for emerging and profound digital healthcare problems
* Comparisons/survey of state-of-the-art analytics tools in health informatics
* Deep learning, representation learning and convolutional neural networks for big data analytics in digital healthcare
* Frontier label-free learning methodology for digital healthcare and health informatics, e.g., one-shot learning, self-taught learning, generative adversarial networks
* Wireless healthcare, smart sensor networks, wearable devices in big data analytics and digital healthcare
* New datasets, benchmarks, and open-source software for big data analytics in digital healthcare

Related Resources

IEEE SSCI 2023   2023 IEEE Symposium Series on Computational Intelligence
MLDM 2023   18th International Conference on Machine Learning and Data Mining
IEEE COINS 2023   IEEE COINS 2023 - Berlin, Germany - July 23-25 - Hybrid (In-Person & Virtual) | Artificial Intelligence, Internet of Things (IoT), Blockchain, Big Data, Machine Learning
IJCNN 2023   International Joint Conference on Neural Networks
CLUSTER 2023   cluster 2023 : IEEE Cluster Conference
ACM-Ei/Scopus-CWCBD 2023   2023 4th International Conference on Wireless Communications and Big Data (CWCBD 2023) -EI Compendex
smart health 2023   1ST INTERNATIONAL WORKSHOP ON SMART HEALTH
MSE 2023   7th International Conference on Materials Science and Engineering
TNNLS-GL 2023   IEEE Transactions on Neural Networks and Learning Systems Special Issue on Graph Learning
IEEE BDAI 2023   IEEE--2023 6th International Conference on Big Data and Artificial Intelligence (BDAI 2023)