posted by user: mayank || 3314 views || tracked by 26 users: [display]

VSI: DL-Fusion 2018 : Special issue On “Deep Learning for Information Fusion” - Information Fusion (Elsevier)

FacebookTwitterLinkedInGoogle

Link: https://www.journals.elsevier.com/information-fusion/call-for-papers/call-for-papers-for-a-special-issue-on-deep-learning-for-inf
 
When N/A
Where N/A
Submission Deadline Nov 30, 2017
Final Version Due Jul 31, 2018
Categories    deep learning   machine learning   information fusion
 

Call For Papers

Call for papers for a special issue On “Deep Learning for Information Fusion”

Information Fusion (Impact Factor: 5.667)

https://www.journals.elsevier.com/information-fusion/call-for-papers/call-for-papers-for-a-special-issue-on-deep-learning-for-inf

In the last couple of years, deep learning algorithms have pushed the boundaries for numerous problems in areas such as computer vision, natural language processing, and audio processing. The performance of advanced machine (deep) learning algorithms has attained the numbers which were unexpected a decade ago. For a given problem, information can be obtained from multiple sources and such multimodal datasets represent information at varying abstraction levels. Combining information from multiple sources can further boost the performance. Recent research has also focused on multimodal deep learning, i.e. representation learning paradigm which learns joint/combined feature from multiple sources. In this relatively new area, information from multiple sources are combined in a deep learning framework. For example, combining audio and video data to obtain joint feature representation.

This special issue focuses on sharing recent advances in algorithms and applications that involve combining multiple sources of information using deep learning. Topics appropriate for this special issue include novel supervised, unsupervised, semi-supervised and reinforcement algorithms, new formulations, and applications related to deep learning and information fusion.

Manuscripts must clearly delineate the role of deep learning information fusion. The manuscript will be judged solely on the basis of new contributions excluding the contributions made in earlier publications. Contributions should be described in sufficient detail to be reproducible on the basis of the material presented in the paper and the references cited therein.

Manuscripts should be submitted electronically at: https://www.evise.com/evise/jrnl/INFFUS

The corresponding author will have to create a user profile if one has not been established previously at Elsevier.

To ensure that all manuscripts are correctly identified for consideration in the Special Issue of Deep Learning for Information Fusion, it is important that authors select “VSI: DL-Fusion".

Deadline for Submission: November 30, 2017

Related Resources

ETHE Blearning 2017   Blended learning in higher education: research findings
ECCV 2018   European Conference on Computer Vision
ICANN 2018   27th International Conference on Artificial Neural Networks
ICPR 2018   24th International Conference on Pattern Recognition
MLDM 2018   14th International Conference on Machine Learning and Data Mining MLDM 2018
IFIP IIP 2018   10th International Conference on Intelligent Information Processing
NAACL HLT 2018   The 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
ICSET--EI Compendex and Scopus 2018   2018 The 2nd International Conference on E-Society, E-Education and E-Technology (ICSET 2018)--EI Compendex and Scopus
ICITA 2018   International Conference on Information Technology and Applications
COLT 2018   Computational Learning Theory