posted by organizer: scresci || 3851 views || tracked by 4 users: [display]

DSSD 2017 : Data Science in Societal Debates


When Oct 19, 2017 - Oct 21, 2017
Where Tokyo, Japan
Submission Deadline May 25, 2017
Notification Due Jul 25, 2017
Final Version Due Aug 15, 2017
Categories    data mining   computational social science   data science   social networks

Call For Papers



Special Session

Tokyo, Japan
October 19-21, 2017



Nowadays, social media platforms, online blogs, and discussion forums are a crucial component in the public sphere, fostering discussions and influencing the public perception for a myriads of social issues such as politics, security, climate, health, economics, migration, to name but a few. On the one hand, this represents an unprecedented opportunity to discuss and propose new ideas, giving voice to the crowds. On the other hand however, new socio-technical issues arise, which are related to the discussion of such controversial topics. Among the most pressing issues in online societal debates, is the formation of so-called “echo chambers”, i.e., situations where polarized like-minded people reinforce each other's opinion, but do not get exposed to the views of the opposing side. Echo chambers have a negative effect on society since polarized communities tend to get isolated and only marginally exposed to unbiased information. As a result, people belonging to echo chambers are more likely to incur in extremization and hate. Unfortunately, misinformation is present also outside of echo chambers. Indeed, rumor spreading, fake news, and hoaxes are another major issue of all controversial social discussions, where people try to influence the opposing side with questionable means. Misinformation and political campaigns are sometimes also carried out by groups of automated accounts that pollute and tamper the social environment by injecting a large number of targeted messages.

This special session focuses on data science approaches to study, model, characterize, and propose solutions to these, and other similar, challenges related to all aspects of polarized, political, and controversial societal debates.



Areas of interest to DSSD 2017 include, but are not limited to:

Methods and Techniques:
- Modeling of online societal debates;
- Modeling influence and influencers in societal debates;
- Monitoring discussion topics across time and space;
- Text analytics for sentiment analysis and opinion mining;
- Graph mining and network analysis for studying polarized communities;
- Modeling the spread of misinformation, rumors, fake news, hoaxes;
- Data-driven methods and techniques for detecting misinformation;
- Data-driven methods and techniques for detecting malicious, polluting, and tampering accounts.

Applications of data science methods and techniques to:
- Reduce polarization in online communities;
- Enforce social networks security and trust;
- Detect misinformation and malicious accounts in online communities;
- Detect and prevent extremization and hate in online discussions.



Paper submission to the DSSD 2017 special session follows the same rules of the DSAA’17 main conference. Papers should be limited to a maximum of ten (10) pages, in the IEEE 2-column format. All submissions should be prepared for Double Blind reviewing. That is, neither the reviewers are revealed nor the author information is to be disclosed.

Papers should be submitted through the EasyChair Conference System:

Please, select the “Special Session on Data Science in Societal Debates” after logging in.



Submission: May 25, 2017
Notification: July 25, 2017
Camera ready: Aug 15, 2017
Conference: Oct 19-21, 2017



All accepted papers will be published by IEEE and included in the IEEE Xplore Digital Library. The conference proceedings will be submitted for EI indexing through INSPEC by IEEE. Selected top quality papers will be invited to submit to International Journal of Data Science and Analytics (JDSA, Springer).



Kalina Bontcheva, University of Sheffield (UK)
Aristides Gionis, Aalto University (Finland)
Maurizio Tesconi, National Research Council (Italy)
Stefano Cresci, National Research Council (Italy)



Dino Pedreschi, University of Pisa (Italy)
Michael Mathioudakis, Aalto University (Finland)
Fred Morstatter, Arizona State University (USA)
Thomas Risse, Leibniz Universität Hannover (Germany)
Roberto Di Pietro, Nokia Bell Labs Paris (France)
Onur Varol, Indiana University (USA)
Izabela Moise, ETH Zurich (Switzerland)
Marinella Petrocchi, National Research Council (Italy)
Luca Maria Aiello, Nokia Bell Labs Cambridge (UK)
Takeshi Sakaki, University of Tokyo (Japan)
Gianmarco De Francisci Morales, Qatar Computing Research Institute (Qatar)
Marcelo Mendoza, Universidad Técnica Federico Santa María (Chile)
Mark Cotè, King’s College London (UK)
Angelo Spognardi, DTU Compute (Denmark)

Related Resources

I-SMAC 2021   5th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)
MECHATROJ 2021   Mechatronics and Applications: An International Journal (MECHATROJ)
Chengdu--DMCIT 2022   2022 6th International Conference on Data Mining, Communications and Information Technology (DMCIT 2022)
MLNLP 2021   2nd International Conference on Machine Learning Techniques and NLP
ECCSIT 2021   2021 European Conference on Computer Science and Information Technology (ECCSIT 2021)
WSDM 2022   Web Search and Data Mining
MDPI-SI-BDHA 2021   Call for Papers: Special Issue “Big Data for eHealth Applications” (MDPI Applied Sciences, IF 2.474 – Indexed on Scopus, Web of Science)
IJEL 2021   International Journal of Electromagnetics
EI-CFAIS 2021   2021 International Conference on Frontiers of Artificial Intelligence and Statistics (CFAIS 2021)
BDIoT 2021   5th International Conference on Big Data and Internet of Things - BDIoT’21