posted by organizer: hesamsagha || 899 views || tracked by 6 users: [display]

Big-Affect 2017 : Utilising Big Unlabelled and Unmatched Data for Affective Computing

FacebookTwitterLinkedInGoogle

Link: https://sites.google.com/view/acii17ubuudac/accueil
 
When Oct 23, 2017 - Oct 26, 2017
Where San Antonio, Texas
Submission Deadline May 2, 2017
Notification Due Jul 14, 2017
Final Version Due Aug 18, 2017
Categories    affective computing   big data   transfer learning   zero-shot learning
 

Call For Papers

There has been lots of research toward affect recognition through different modalities such as speech, video, and text. Despite these great efforts, the performed analyses are often limited to small collected datasets which consequently makes generated models barely generalisable to other recording scenarios. This lack of `big' labelled data for affective computing hampers creating deep models, which have proved their substantial effectiveness, so far, mostly in related fields such as speech and video recognition. Thanks to the popularity of social multimedia, collecting audiovisual and textual data has become a somewhat easy task. Nonetheless, labeling such data demands a huge amount of (expert) human work, which can be expensive and time-consuming. Additionally, collected data may not have high quality and therefore, may not be sufficiently reliable to be used for training a model. Furthermore, collected data from different sources may be highly dissimilar, which can also lead to performance degradation. Therefore, in this special session, we seek approaches that aim to increase the number of reliable labelled data with less human effort as well as to match data distributions between labelled and un- or partially-labelled corpora. This will be a crucial step to lead Affective Computing to industrial level and bring related everyday applications into real life.

Topics (indication, not limited to):

* semi-supervised learning and active learning
* zero resource technologies, as unsupervised learning
* transfer learning for domain/model adaptation
* using weak labels and co-training
* crowdsourcing for collecting and annotation large-scale data
* affective data augmentation and synthesis
* reinforcement learning
* cloud/distributed computing algorithms for big affective data
* applications (such as cross-language cross-cultural adaptation, cross-modality transfer learning, ...)

For further details see https://sites.google.com/view/acii17ubuudac/accueil​

Related Resources

ICDM 2018   18th Industrial Conference on Data Mining ICDM 2018
ADAH 2017   Advanced Data Analytics in Health
IEEE - ICBDA 2018   2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA 2018)--IEEE Xplore and Ei Compendex
BDIOT - ACM 2017   ACM - 2017 International Conference on Big Data and Internet of Things (BDIOT2017)--Ei Compendex, Scopus and ISI
DSA 2018   The Frontiers in Intelligent Data and Signal Analysis DSA 2018
PDP 2018   The 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing
Ei - ICBDA - IEEE 2018   2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA 2018)--IEEE Xplore and Ei Compendex
BigData Congress 2018   The 7th International Congress on Big Data
IoTBDS 2018   3rd International Conference on Internet of Things, Big Data and Security
CIP in RS&OSN 2018   Computational Intelligence Paradigms in Recommender Systems and Online Social Networks