posted by organizer: hesamsagha || 2047 views || tracked by 5 users: [display]

Big-Affect 2017 : Utilising Big Unlabelled and Unmatched Data for Affective Computing

FacebookTwitterLinkedInGoogle

Link: https://sites.google.com/view/acii17ubuudac/accueil
 
When Oct 23, 2017 - Oct 26, 2017
Where San Antonio, Texas
Submission Deadline May 2, 2017
Notification Due Jul 14, 2017
Final Version Due Aug 18, 2017
Categories    affective computing   big data   transfer learning   zero-shot learning
 

Call For Papers

There has been lots of research toward affect recognition through different modalities such as speech, video, and text. Despite these great efforts, the performed analyses are often limited to small collected datasets which consequently makes generated models barely generalisable to other recording scenarios. This lack of `big' labelled data for affective computing hampers creating deep models, which have proved their substantial effectiveness, so far, mostly in related fields such as speech and video recognition. Thanks to the popularity of social multimedia, collecting audiovisual and textual data has become a somewhat easy task. Nonetheless, labeling such data demands a huge amount of (expert) human work, which can be expensive and time-consuming. Additionally, collected data may not have high quality and therefore, may not be sufficiently reliable to be used for training a model. Furthermore, collected data from different sources may be highly dissimilar, which can also lead to performance degradation. Therefore, in this special session, we seek approaches that aim to increase the number of reliable labelled data with less human effort as well as to match data distributions between labelled and un- or partially-labelled corpora. This will be a crucial step to lead Affective Computing to industrial level and bring related everyday applications into real life.

Topics (indication, not limited to):

* semi-supervised learning and active learning
* zero resource technologies, as unsupervised learning
* transfer learning for domain/model adaptation
* using weak labels and co-training
* crowdsourcing for collecting and annotation large-scale data
* affective data augmentation and synthesis
* reinforcement learning
* cloud/distributed computing algorithms for big affective data
* applications (such as cross-language cross-cultural adaptation, cross-modality transfer learning, ...)

For further details see https://sites.google.com/view/acii17ubuudac/accueil​

Related Resources

CCBD--Ei Compendex & Scopus 2021   2021 The 8th International Conference on Cloud Computing and Big Data (CCBD 2021)--Ei Compendex & Scopus
ICDM 2021   21th Industrial Conference on Data Mining
ML_BDA 2021   Special Issue on Machine Learning Technologies for Big Data Analytics
SoCAV 2021   2021 International Symposium on Connected and Autonomous Vehicles (SoCAV 2021)
BDIoT 2021   5th International Conference on Big Data and Internet of Things - BDIoT’21
ITAS--EI Compendex, Scopus 2021   2021 Information Technology & Applications Symposium (ITAS 2021)--EI Compendex, Scopus
ICoIV 2021 - Ei Compendex & Scopus 2021   2021 International Conference on Intelligent Vehicles (ICoIV 2021)
CBDA 2021   2nd International Conference on Big Data
AIBD 2021   2nd International Conference on Artificial Intelligence and Big Data
Big Data Analytics in Sustainable City 2021   IS04: Big Data Analytics in Sustainable and Smart City