posted by organizer: arcus || 3590 views || tracked by 11 users: [display]

KALSIMIS 2017 : Knowledge Acquisition and Learning in Semantic Interpretation of Medical Image Structures

FacebookTwitterLinkedInGoogle

Link: http://www.bioimaging.biostec.org/KALSIMIS.aspx
 
When Feb 21, 2017 - Feb 23, 2017
Where Porto
Submission Deadline Dec 14, 2016
Notification Due Dec 23, 2016
Final Version Due Jan 5, 2017
Categories    image analysis   computer vision   machine learning   medical imaging
 

Call For Papers

Current machine learning techniques are able to achieve spectacular results in automatic understanding of natural images whereas in the area of medical image analysis the progress is not that evident. The problem is medical knowledge essential for proper interpretation of image content. That knowledge, possessed by relatively small number of radiological experts, usually cannot be directly expressed using mathematical formulas. This can be overcome by laborious knowledge acquisition or by techniques to some extent imitating expert behaviour. Both approaches are, however, still challenging tasks. That is why the goal of the special session is to discuss the problems in acquisition and utilization of domain knowledge in automatic understanding of semantic image structure.

TOPICS:
Both computer scientists and radiologists are welcome as participants. The session should constitute a perfect forum to express expectations, suggest solutions and share experience for members of those two communities.
The scope of the session contains, but is not limited to, the following topics:
- expert knowledge acquisition and representation methods (how effectively medical knowledge can be acquired and used in existing models of image analysis);
- classical image segmentation and object localization techniques capable of using domain specific knowledge (e.g. active contours and their generalizations);
- structural image representation and analysis (e.g. image decomposition, structured prediction, probabilistic graphical models);
- deep architectures in image analysis (e.g. convolutional neural networks).

Related Resources

ETHE Blearning 2017   Blended learning in higher education: research findings
ICPR 2018   24th International Conference on Pattern Recognition
ACML 2017   The 9th Asian Conference on Machine Learning
KESW 2017   Knowledge Engineering and Semantic Web
WACV 2017   IEEE Winter Conference on Applications of Computer Vision
ISWC 2017   16th International Semantic Web Conference
ASPMMI 2017   IEEE Access: Special Issue on Advanced Signal Processing Methods in Medical Imaging
ICMLA 2017   16th IEEE International Conference On Machine Learning And Applications
JIST 2017   7th Joint International Semantic Technology Conference
MIWAI 2017   The 11th Multi-disciplinary International Workshop on Artificial Intelligence