posted by user: Aholzinger || 5945 views || tracked by 8 users: [display]

PAML 2017 : Privacy Aware Machine Learning

FacebookTwitterLinkedInGoogle

Link: http://hci-kdd.org/privacy-aware-machine-learning-for-data-science-2
 
When Sep 1, 2017 - Sep 1, 2017
Where Reggio di Calabria
Submission Deadline Apr 1, 2017
Notification Due May 1, 2017
Final Version Due Jun 1, 2017
Categories    machine learning   privacy   open data   data science
 

Call For Papers

Machine learning is the fastest growing field in computer science [Jordan, M. I. & Mitchell, T. M. 2015. Machine learning: Trends, perspectives, and prospects. Science, 349, (6245), 255-260], and it is well accepted that health informatics is amongst the greatest challenges [LeCun, Y., Bengio, Y. & Hinton, G. 2015. Deep learning. Nature, 521, (7553), 436-444 ], e.g. large-scale aggregate analyses of anonymized data can yield valuable insights addressing public health challenges and provide new avenues for scientific discovery [Horvitz, E. & Mulligan, D. 2015. Data, privacy, and the greater good. Science, 349, (6245), 253-255]. Privacy is becoming a major concern for machine learning tasks, which often operate on personal and sensitive data. Consequently, privacy, data protection, safety, information security and fair use of data is of utmost importance for health data science.
Research topics covered by this special session include but are not limited to the following topics:

– Production of Open Data Sets
– Synthetic data sets for learning algorithm testing
– Privacy preserving machine learning, data mining and knowledge discovery
– Data leak detection
– Data citation
– Differential privacy
– Anonymization and pseudonymization
– Securing expert-in-the-loop machine learning systems
– Evaluation and benchmarking

This special session will bring together scientists with diverse background, interested in both the underlying theoretical principles as well as the application of such methods for practical use in the biomedical, life sciences and health care domain. The cross-domain integration and appraisal of different fields will provide an atmosphere to foster different perspectives and opinions; it will offer a platform for novel crazy ideas and a fresh look on the methodologies to put these ideas into business.

Accepted Papers will be published in a Springer Lecture Notes in Computer Science LNCS Volume.

Related Resources

blockchain_ml_iot 2023   Network (MDPI) Special Issue - Blockchain and Machine Learning for IoT: Security and Privacy Challenges
ACM-Ei/Scopus-CWCBD 2023   2023 4th International Conference on Wireless Communications and Big Data (CWCBD 2023) -EI Compendex
ICDM 2023   International Conference on Data Mining
CFDSP 2023   2023 International Conference on Frontiers of Digital Signal Processing (CFDSP 2023)
ESANN 2023   European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
KDD 2023   29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING
Distributed ML and Opt. 2023   Distributed Machine Learning and Optimization: Theory and Applications
UAI 2023   Uncertainty in Artificial Intelligence
SI-MLT 2023   Special Issue on MACHINE LEARNING IN TOURISM - Int. J. of Machine Learning and Cybernetics (Springer)
MLDM 2023   19th International Conference on Machine Learning and Data Mining