posted by organizer: dzissis || 1802 views || tracked by 3 users: [display]

ITSBD 2016 : International workshop on Intelligent Transportation Systems and Big Data

FacebookTwitterLinkedInGoogle

Link: http://www.syros.aegean.gr/users/dzissis/itsbd/
 
When Oct 23, 2016 - Oct 25, 2016
Where Thessaloniki, Greece
Submission Deadline May 30, 2016
Notification Due Jun 15, 2016
Final Version Due Jun 30, 2016
Categories    big data   transport   intelligent systems   machine learning
 

Call For Papers

Scope of the workshop

All modes of transportation are now generating unprecedented amounts of data. While cargo and people are being transported across air, sea and land, a multitude of sensors are reporting on their constantly changing state. These firehoses of data, hold key knowledge for deciphering the complexity of transport, which amongst others includes capturing methods of optimizing supply chains, understanding fluctuations in demand, reducing emissions and improving safety and efficiency of operations. Unfortunately, current state of the art techniques and technologies are incapable of dealing with these growing volumes of high-speed, loosely structured, spatiotemporal data streams that require real-time analysis in order to produce actionable intelligence. It is a general belief that we currently lack infrastructures capable of storing, analyzing and correlating big data in a holistic way and under (even soft) real-time constraints. Extracting knowledge from diverse data sources requires the development of innovative algorithms, services and architectures capable of fusing and ingesting data at such volume, velocity and variety.

Intelligent solutions are in demand which exhibit the characteristics of autonomic and intelligent big data mining, capable of reducing data dimensionality and resolving the complexity of the problem state in an automatic or semi automatic way. A new dimension of possible services is revealing based on the innovative dynamics and perspectives of machine learning and automation of knowledge generation and exploitation. Collaborative research is necessary at the intersection of transport and the emerging Information and Communication Technology. This workshop invites research communities from a diverse set of scientific areas such as artificial intelligence, evolving and intelligent systems, big data, cloud computing, information fusion and distributed systems to publish their work and share opinions regarding real world applications, challenges and viable solutions to the potential new generation services emerging from the wealth of transportation data available today.
Topics

Today more than ever, collaborative research is necessary at the intersection of the transportation domain and Information and Communication Technology. This workshop invites research communities from a diverse set of scientific areas such as artificial intelligence, evolving and intelligent systems, big data, cloud computing, information fusion and distributed systems to publish their work and share opinions regarding real world applications, challenges and viable solutions to the potential new generation services emerging from the wealth of transportation data available today.

The topics of this workshop revolve around two interrelated themes,

Real world applications and case studies of data driven intelligent transportation systems
Algorithms and Architectures for data driven intellegent transportation systems

Real world Data Driven transportation applications and architectures

I. Real world applications and systems deployed to solve intelligently big data issues in the transportation domain. This workshops invites papers describing case studies from all areas of transportation which benefit from big data processing including,

Smart Ports and Shipping
Smart Rail
Smart Freight Transportation
Smart Aviation

Including,

Data driven implementations of Autonomous transportation
Implementations of Intelligent Supply chains
Applications and deployments of cloud computing and distributed platforms in transport
Sensor networks and IOT implementations in transport

II. Algorithms & Methods

Intelligent algorithms for fusing, ingesting, learning and reducing the dimensionality of data in the transportation domain including

Deep learning architectures
Compression and dimensionality reduction
Efficient learning and clustering at scale
Time series prediction algorithms
Statistical models
Real-time forecasting
Approaches of traffic simulation
Prediction of chaotic time series
Evolutionary algorithms for time series prediction

Instructions for authors

Paper submission: May 30th, 2016

Notification of paper acceptance: June 15th, 2016

The submission Web site for ITSBD2016 is though here http://www.syros.aegean.gr/users/dzissis/itsbd/

Workshop proceedings will be published by SPRINGER

Extended versions of selected papers which present an evolving aspect, will be invited by the program committee for publication, after further revision, in a Special Issue on Evolving Systems for Smart Transport and Big Data Analytics of the Journal of Evolving Systems (Springer).

Please email inquiries concerning the workshop to: dzissis_AT_aegean.gr or tserpes_AT_hua.gr

Related Resources

WCMC Special Issue on Smart Cities 2017   Wireless Communications and Mobile Computing - Special Issue on 'Smart Cities: Recent Trends, Methodologies, and Applications'
ICML 2017   34th International Conference on Machine Learning
DSAA 2017   The 4th IEEE International Conference on Data Science and Advanced Analytics 2017
ICONIP 2017   International Conference on Neural Information Processing
IJCAI 2017   International Joint Conference on Artificial Intelligence
ECML-PKDD 2017   European Conference on Machine Learning and Principles and Practice of Knowledge Discovery
KDD 2017   Knowledge Discovery and Data Mining
ICITE 2017   2017 2nd International Conference on Intelligent Transportation Engineering (ICITE 2017)-IEEE Xplore and Ei Compendex
IEEE--ICITE 2017   2017 2nd International Conference on Intelligent Transportation Engineering (ICITE 2017)-IEEE Xplore and Ei Compendex
IMDA-CASE 2017   INTELLIGENT METHODS FOR DATA ANALYSIS AND COMPUTER AIDED SOFTWARE ENGINEERING