posted by user: ludovicoboratto || 4642 views || tracked by 29 users: [display]

BDM-ISF 2016 : Special issue on Behavioral-Data Mining in Information Systems and the Big Data Era

FacebookTwitterLinkedInGoogle

Link: http://sites.unica.it/bdm-isf/
 
When N/A
Where N/A
Submission Deadline Sep 15, 2016
Notification Due Dec 15, 2016
Final Version Due Feb 15, 2017
Categories    data mining   big data   information systems   machine learning
 

Call For Papers

CALL FOR PAPERS
An information system collects and processes data with the aim to extract information and to support decision-making tasks. Since the advent of the so-called Social Web (also known as Web 2.0), users are allowed to create content and upload it on the Web, so huge amounts of data are continuously generated, leading to the widely known big data problem. In order to handle these new challenges and accomplish their objectives, information systems need efficient and effective ways to process these data. On the one hand, the algorithms that process these large amounts of data should have low computational costs, in order to keep up with the rapid evolution of the Web and guarantee efficiency, while on the other hand they should be able to filter out the useless sources of data and process only those that lead to an effective decision making.

Behavioral-data mining is the process of extracting information by analyzing the huge amounts of data that describe the behavior of the users in a system. This particular kind of mining has proven to be useful in various information systems areas [1], such as the detection of tag clusters [2], the creation of web personalization services [3], the improvement of web search ranking [4], and the generation of friend recommendations in social media systems [5].

A new frontier in Information Systems is to produce behavioral-data mining approaches able to deal with the big data problem. This special issue solicits novel papers on a broad range of topics, including, but not limited to:
- Behavioral-data mining algorithms employed in information systems that deal with the big data problem;
- Analysis of behavioral social web data in order to explore its effectiveness for information systems;
- Algorithms to extract and select features from behavioral data, in order to employ these data in information systems and decision making processes;
- Real-world information systems that employ behavioral-data mining and deal with the big data;
- Data mining theories, methods, and applications on behavioral big data, to be applied in information systems;


TENTATIVE TIMELINE
- Call for papers publication: March 15, 2016
- Manuscript submission due: September 15, 2016
- First round decision made: December 15, 2016
- Revised manuscript due: February 15, 2017
- Final decision made: March 15, 2017
- Final paper due: April 15, 2017


SUBMISSION GUIDELINES
Paper submissions must conform to the Information Systems Frontiers format guidelines (http://www.springer.com/business/business+information+systems/journal/10796).

Manuscripts must be submitted to the online submission system (https://www.editorialmanager.com/isfi/). Please, select option "SI: BDM" in the "Choose Article Type" section.

Submissions to this Special Issue must represent original material that has been neither submitted to, nor published in, any other journal. A submission based on one or more papers that appeared elsewhere should have at least 30% of novel valuable content that extends the original work (the original papers should be referenced and the novel contributions should be clearly stated in the submitted paper).


WEBSITE
http://sites.unica.it/bdm-isf/


CONTACT
For general enquires regarding the special issue, send an email to bdm.isf@gmail.com.


GUEST EDITORS
Dr. Ludovico Boratto, University of Cagliari (Italy)
Prof. Salvatore Carta, University of Cagliari (Italy)
Dr. Andreas Kaltenbrunner, Eurecat (Spain)
Dr. Matteo Manca, Eurecat (Spain)


REFERENCES FOR BEHAVIORAL-DATA MINING IN INFORMATION SYSTEMS
[1] A. Beutel, L. Akoglu, and C. Faloutsos. “Graph-Based User Behavior Modeling: From Prediction to Fraud Detection”. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '15), pp. 2309-2310 (2015).
[2] L. Boratto, S. Carta, and E. Vargiu, “RATC: A robust automated tag clustering technique,” in E-Commerce and Web Technologies, 10th International Conference, EC-Web 2009, Proceedings, ser. Lecture Notes in Computer Science, vol. 5692. Springer, pp. 324–335 (2009).
[3] B. Mobasher, R. Cooley, J. Srivastava, “Automatic personalization based on web usage mining”. Commun. ACM 43(8), pp. 142–151 (Aug 2000)
[4] E. Agichtein, E. Brill, S. Dumais, “Improving web search ranking by incorporating user behavior information”. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval pp. 19– 26. SIGIR ’06, ACM (2006)
[5] M. Manca, L. Boratto, S. Carta, “Behavioral Data Mining to Produce Novel and Serendipitous Friend Recommendations in a Social Bookmarking System”. Information Systems Frontiers (2015).

Related Resources

pehealth 2016   The 1st Pacific Rim International Workshop on eHealth Mining (PeHealth)
ICML 2017   34th International Conference on Machine Learning
DSAA 2017   The 4th IEEE International Conference on Data Science and Advanced Analytics 2017
ECML-PKDD 2017   European Conference on Machine Learning and Principles and Practice of Knowledge Discovery
IJCAI 2017   International Joint Conference on Artificial Intelligence
KDD 2017   Knowledge Discovery and Data Mining
ICONIP 2017   International Conference on Neural Information Processing
CIKM 2017   The 26th 2017 ACM Conference on Information and Knowledge Management
IEEE ITOEC 2017   2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference
MLDM 2017   Machine Learning and Data Mining in Pattern Recognition