posted by organizer: sameer || 11756 views || tracked by 18 users: [display]

LearningSys 2015 : NIPS 2015 Workshop on Machine Learning Systems


When Dec 12, 2015 - Dec 12, 2015
Where Montreal, CANADA
Submission Deadline Oct 10, 2015
Notification Due Oct 27, 2015
Categories    systems   machine learning   big data

Call For Papers

NIPS 2015 Workshop on Machine Learning Systems (LearningSys 2015)

December 12, 2015
Submission System:

# Call for Papers

This workshop aims to bring together researchers from the machine learning and systems communities. We invite high-quality extended abstracts of original research addressing two major questions: (1) How should we design useful abstractions and build scalable systems to support large-scale machine learning? (2) How can we use machine learning in our systems to make them smarter and more efficient? Focal points for discussions and solicited submissions include but are not limited to:

- Systems for online and batch learning algorithms
- Systems for out-of-core machine learning
- Systems for scalable deep learning
- Implementation studies of large-scale distributed learning algorithms --- challenges faced and lessons learned
- Database systems for Big Learning --- models and algorithms implemented, properties (fault tolerance, consistency, scalability, etc.), strengths and limitations
- Programming languages for machine learning
- Data driven systems --- learning for job scheduling, configuration tuning, straggler mitigation, network configuration, security, and other systems challenges
- Systems for interactive machine learning
- Systems for serving machine learning models at scale

Submissions should be extended abstracts, no longer than 4 pages (excluding references) in the NIPS latex style and submitted using the online submission system. Submissions that focus on emerging applications or deployment case studies are particularly encouraged. We are also interested in demos of operational toolkits and platforms. Relevant work previously presented in non-machine-learning conferences is strongly encouraged, though contributors should note this in their submission.

# Workshop Description and Motivation

The broadening use of machine learning, the explosive growth in data, and the complexity of the large-scale learning systems required to analyze these data have together fueled interdisciplinary research at the intersection of Machine Learning and System design. Addressing these challenges demands a combination of the right abstractions -- for algorithms, data structures, and interfaces -- as well as scalable systems capable of addressing real world learning problems. At the same time, it is becoming increasingly clear that data-driven and learning-driven approaches provide natural and powerful solutions to building and managing complex modern systems. In total, the flow of ideas between these two communities continues to offer promising opportunities toward solving even larger problems.

Designing systems for machine learning presents new challenges and opportunities over the design of traditional data processing systems. For example, what is the right abstraction for data consistency in the context of parallel, stochastic learning algorithms? What guarantees of fault tolerance are needed during distributed learning? The statistical nature of machine learning offers an opportunity for more efficient systems but requires revisiting many of the challenges addressed by the systems and database communities over the past few decades. Machine learning focused developments in distributed learning platforms, programming languages, data structures, general purpose GPU programming, and a wide variety of other domains have had and will continue to have a large impact in both academia and industry.

As the relationship between the machine learning and systems communities has grown stronger, new research in using machine learning tools to solve classic systems challenges has also grown. Specifically, as we develop larger and more complex systems and networks for storing, analyzing, serving, and interacting with data, machine learning offers promise for modeling system dynamics, detecting issues, and making intelligent, data-driven decisions within our systems. Machine learning techniques have begun to play critical roles in scheduling, system tuning, and network analysis. Through working with systems and databases researchers to solve systems challenges, machine learning researchers can both improve their own learning systems as well as impact the systems community and infrastructure at large.

This is a successor to the Big Learning workshop (, which in past NIPS successfully focused on and brought attention to the need for scaling machine learning. Moving forward, this Machine Learning Systems workshop aims to address research at the intersection of machine learning and systems.

# Confirmed Speakers

- Jeff Dean, Google
- Alex Smola, Carnegie Mellon University
- Chris Re, Stanford University
- Sarah Bird, Microsoft Research
- Joseph Gonzalez, University of California, Berkeley
- Mathias Brandewinder, Clear Lines Consulting

# Organizers

- Alex Beutel, CMU
- Tianqi Chen, UW
- Sameer Singh, UW
- Markus Weimer, Microsoft
- Elaine Angelino, UC Berkeley
- Joseph Gonzalez, UC Berkeley

Related Resources

ICMLA 2024   23rd International Conference on Machine Learning and Applications
ACM-Ei/Scopus-CCISS 2024   2024 International Conference on Computing, Information Science and System (CCISS 2024)
MLIS 2024   The 6th International Conference on Machine Learning and Intelligent Systems (MLIS 2024)
ECAI 2024   27th European Conference on Artificial Intelligence
IEEE ICCR 2024   IEEE--2024 6th International Conference on Control and Robotics (ICCR 2024)
ICDM 2024   IEEE International Conference on Data Mining
JCICE 2024   2024 International Joint Conference on Information and Communication Engineering(JCICE 2024)
LAJC 2024   Latin-American Journal of Computing
AIM@EPIA 2024   Artificial Intelligence in Medicine
AIAT--EI 2024   2024 4th International Conference on Artificial Intelligence and Application Technologies (AIAT 2024)