posted by user: kyunghyuncho || 2031 views || tracked by 4 users: [display]

MMML 2015 : Multimodal Machine Learning Workshop @NIPS 2015


When Dec 11, 2015 - Dec 11, 2015
Where Montreal, QC, Canada
Submission Deadline Oct 9, 2015
Notification Due Oct 24, 2015

Call For Papers

NIPS 2015 Workshop: Multimodal Machine Learning
Montreal, Quebec, Canada


· Submission Deadline: October 9th, 2015
· Author Notification: October 24th, 2015
· Workshop: December 11, 2015


· Shih-Fu Chang (Columbia University)
· Li Deng (Microsoft Research)
· Raymond Mooney (University of Texas, Austin)
· Ruslan Salakhutdinov (Carnegie Mellon University)


Multimodal machine learning aims at building models that can process and relate information from multiple modalities. From the early research on audio-visual speech recognition to the recent explosion of interest in models mapping images to natural language, multimodal machine learning is a vibrant multi-disciplinary field of increasing importance and with extraordinary potential.

Learning from paired multimodal sources offers the possibility of capturing correspondences between modalities and gain in-depth understanding of natural phenomena. Thus, multimodal data provides a means of reducing our dependence on the more standard supervised learning paradigm that is inherently limited by the availability of labeled examples.

This research field brings some unique challenges for machine learning researchers given the heterogeneity of the data and the complementarity often found between modalities. This workshop will facilitate the progress in multimodal machine learning by bringing together researchers from natural language processing, multimedia, computer vision, speech processing and machine learning to discuss the current challenges and identify the research infrastructure needed to enable a stronger multidisciplinary collaboration.


We are looking for contributed papers that apply machine learning to multimodal data. We are interested in both application-oriented papers as well as more fundamental algorithmic / theoretical works.

A non-exhaustive list of relevant topics:

· Automatic image and video description
· Multimodal signal processing
· Audio-visual speech recognition
· Multimodal affect recognition
· Cross-modal multimedia retrieval
· Multi-view multi-task learning
· Multimodal representation learning
· Multi-sensory computational modeling
· Multilingual, multimodal language processing
· Multimodal modeling for robotics control
· Multimodal human behavior modeling


Authors should submit an extended abstract between 4 and 6 pages (including references). We particularly encourage submissions that have been previously published outside the machine learning community (i.e. at NIPS and ICML) to emphasize the multidisciplinary aspect of this research area. We also encourage submission of relevant work in progress.

Submitted abstracts may be a shortened version of a longer paper or technical report, in which case the longer paper should be referred from the submission. Reviewers will be asked to judge the submission solely based on the submitted extended abstract.

All submissions must be in PDF format, and we encourage authors to follow the style guidelines of NIPS 2015 at:

Submissions must be made through:

Submissions will be reviewed for relevance, quality and novelty. They will be presented as posters during the poster session (before the lunch break). A handful of submissions will be given a short talk.


· Louis-Philippe Morency (
· Tadas Baltrušaitis (
· Aaron Courville (
· KyungHyun Cho (

Related Resources

ICML 2017   34th International Conference on Machine Learning
IJCAI 2017   International Joint Conference on Artificial Intelligence
MLDM 2017   Machine Learning and Data Mining in Pattern Recognition
ECML-PKDD 2017   European Conference on Machine Learning and Principles and Practice of Knowledge Discovery
DSAA 2017   The 4th IEEE International Conference on Data Science and Advanced Analytics 2017
CCML 2017   The 16th China Conference on Machine Learning
ISMIS 2017   23rd International Symposium on Methodologies for Intelligent Systems
ICMR 2017   ACM International Conference on Multimedia Retrieval
ACM--ICDLT 2017   ACM--2017 International Conference on Deep Learning Technologies (ICDLT 2017)--Ei Compendex and Scopus
JWS-SS 2016   Journal of Web Semantics special issue on Semantic Statistics