posted by user: gfursin || 2080 views || tracked by 15 users: [display]

SMART 2009 : SMART'09: 3rd Workshop on Statistical and Machine learning approaches to ARchitectures and compilaTion

FacebookTwitterLinkedInGoogle

Link: http://www.hipeac.net/smart-workshop.html
 
When Jan 25, 2009 - Jan 25, 2009
Where Paphos, Cyprus
Submission Deadline Nov 21, 2008
Notification Due Dec 19, 2008
Categories    computer architecture   compilers   machine learning   optimization
 

Call For Papers

********************************************************************************
CALL FOR PAPERS

3rd Workshop on
Statistical and Machine learning approaches
to ARchitecture and compilaTion
(SMART'09)

http://www.hipeac.net/smart-workshop.html

January 25, 2009, Paphos, Cyprus

(co-located with HiPEAC 2009 Conference)

**** NEW PANEL INFORMATION ****
Can machine learning help to solve the multicore code generation issues?

**** NEW PUBLICATION INFORMATION ****
Selected papers will be considered for publication in a special issue
of the International Journal of Parallel Programming.
********************************************************************************

The rapid rate of architectural change and the large diversity
of architecture features has made it increasingly difficult
for compiler writers to keep pace with microprocessor evolution.
This problem has been compounded by the introduction of multicores.
Thus, compiler writers have an intractably complex problem to solve.
A similar situation arises in processor design where new approaches
are needed to help computer architects make the best use of new underlying
technologies and to design systems well adapted to futureapplication domains.

Recent studies have shown the great potential of statistical machine
learning and search strategies for compilation and machine design.
The purpose of this workshop is to help consolidate and advance the state
of the art in this emerging area of research. The workshop is a forum
for the presentation of recent developments in compiler techniques
and machine design methodologies based on space exploration
and statistical machine learning approaches with the objective
of improving performance, parallelism, scalability, and adaptability.

Topics of interest include (but are not limited to):

Machine Learning, Statistical Approaches, or Search applied to

* Feedback-Directed Compilation
* Auto-tuning Programs + Language Extensions
* Library Generators
* Iterative Compilation
* Dynamic Compilation/Adaptive Execution
* Parallel Compiler Optimizations
* Low-power Optimizations
* Simulation
* Performance Models
* Adaptive Processor and System Architecture
* Design Space Exploration
* Other Topics relevant to Intelligent and Adaptive Compilers/Architectures

**** Paper Submission Guidelines ****

Paper length - maximum 15 pages. Papers must be submitted in the PDF
(preferably) or postscript formats using the workshop submission website:
http://unidapt.org/dissemination/workshops/smart09

We suggest to use LNCS LaTeX templates that can be found at
http://www.springeronline.com/lncs (go to "For Authors"
and then "Information for LNCS Editors/Authors").

An informal collection of the papers to be presented will be distributed at
the workshop. All accepted papers will appear on the workshop website.

**** Important Dates ****

Final deadline for submission: November 21, 2008
Decision notification: December 19, 2008
Workshop: January 25, 2009

Program Chair:
David Padua, University of Illinois at Urbana-Champaign, USA

Organizers:
Grigori Fursin, INRIA Saclay, France
John Cavazos, University of Delaware, USA

Program Committee:
Saman Amarasinghe, MIT, USA
Francois Bodin, CAPS Enterprise, France
Calin Cascaval, IBM T.J. Watson Research Center, USA
John Cavazos, University of Delaware, USA
Franz Franchetti, Carnegie Mellon University, USA
Ari Freund, IBM Haifa Research Lab, Israel
Grigori Fursin, INRIA Saclay, France
Mary Hall, USC/ISI, USA
Robert Hundt, Google, USA
Michael O'Boyle, University of Edinburgh, UK
David Padua, University of Illinois at Urbana-Champaign, USA
Richard Vuduc, Georgia Institute of Technology, USA
David Whalley, Florida State University, USA

Panel: Can machine learning help to solve the multicore code generation issues?
Chair:
Francois Bodin, CAPS-Enterprise, France

Participants:
Marcelo Cintra, University of Edinburgh, UK
Bilha Mendelson, IBM, Israel
Lawrence Rauchwerger, Texas A&M University, USA
Per Stenstrom, Chalmers University of Technology, Sweden

Related Resources

ICPR 2018   24th International Conference on Pattern Recognition
ETHE Blearning 2017   Blended learning in higher education: research findings
ECCV 2018   European Conference on Computer Vision
MLDM 2018   14th International Conference on Machine Learning and Data Mining MLDM 2018
ICANN 2018   27th International Conference on Artificial Neural Networks
NAACL HLT 2018   The 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
COLT 2018   Computational Learning Theory
RO-MAN 2018   27th IEEE International Conference on Robot and Human Interactive Communication
ICAISC 2018   International Conference on Artificial Intelligence and Soft Computing
GECCO 2018   Genetic and Evolutionary Computation Conference