posted by organizer: shicheng || 5445 views || tracked by 4 users: [display]

Swarm Intelligence in Big Data Analytics 2014 : International Journal of Swarm Intelligence Research (IJSIR) Special Issue on Swarm Intelligence in Big Data Analytics

FacebookTwitterLinkedInGoogle

Link: http://www.igi-global.com/calls-for-papers-special/international-journal-swarm-intelligence-research/1149
 
When N/A
Where N/A
Submission Deadline Jan 1, 2014
Notification Due Mar 1, 2014
Final Version Due Jun 1, 2014
Categories    evolutionary computation   swarm intelligence   data mining   big data analytics
 

Call For Papers

1. Aim and Scope
Nowadays, the big data has attracted attentions from more and more researchers. The big data is defined as the dataset whose size is beyond the processing ability of typical database or computers. The big data analytics is to automatically extract knowledge from large amounts of data. It can be seen as mining or processing of massive data, and "useful" information could be retrieved from large dataset. The properties of big data analytics can be concentrated in three parts: large volume, variety of different sources, and fast increasing speed, i.e., velocity. The algorithms should be effective to solve large-scale, dynamic the big data analytics problems.

Swarm intelligence (SI), which is based on a population of individuals, is a collection of nature-inspired searching techniques. To search a problem domain, a swarm intelligence algorithm processes a population of individuals. Each individual represents a potential solution of the problem being optimized. In swarm intelligence, an algorithm maintains and successively improves a population of potential solutions until some stopping condition is met. The solutions are initialized randomly in the search space, and are guided toward the better and better areas through the interaction among solutions over iterations.

The swarm intelligence algorithms have shown significant achievements on solving large scale, dynamical, and multi-objective problems. With the application of the swarm intelligence, more rapid and effective methods can be designed to solve big data analytics problems.

Topics
This special issue aims at fostering the latest development of Swarm Intelligence Techniques for Big Data analytics problems. Original contributions that provide novel theories, frameworks, and solutions to challenging problems of Big Data analytics are very welcome for this Special Issue. Potential topics include, but are not limited to:

The use of swarm intelligence techniques such as:

1) Ant colony optimization
2) Artificial immune system
3) Brain Storm Optimization
4) Cultural algorithm
5) Differential Evolution
6) Fireworks Algorithm
7) Particle swarm optimization
in / for
Active learning on big data
Advertising on the Web
Anomaly detection in big data
Data size and feature space adaptation
Distributed learning techniques in uncertain environment
Distributed parallel computation
Feature selection/extraction in big data
Frequent Itemsets Analysis
Imbalance learning on big data
Incremental Learning
Link Analysis
Sample selection based on uncertainty
Uncertainty in cloud computing
Uncertainty modeling in learning from big data
Uncertainty techniques in big data classification / clustering
Massive data categorization / Clustering
Mining Data Streams
Mining Social-Network Graphs
Recommendation Systems
Reinforcement learning on big data
3. Submission
Manuscripts must be prepared according to the instructions of the "Guidelines for Submission" of the journal, available at: http://www.igi-global.com/journals/guidelines-for-submission.aspx.

Please submit your papers via emails to one of guest co-editors, Dr. Shi Cheng at shi.cheng#nottingham.edu.cn, or Dr. Ruibin Bai at ruibin.bai#nottingham.edu.cn. Submitted papers will be reviewed by at least three reviewers. The submission of a manuscript implies that it is the authors' original unpublished work and has not being submitted for possible publication elsewhere.

January 1, 2014: Submission deadline.
March 1, 2014: Notice of the first round review.
April 1, 2014: Revision due
May 1, 2014: Final notice of acceptance/reject
June 1, 2014: Final manuscript due

4. Guest Editors
Dr. Shi Cheng, University of Nottingham Ningbo, China. Email:shi.cheng#nottingham.edu.cn

Dr. Ruibin Bai, University of Nottingham Ningbo, China. Email: ruibin.bai#nottingham.edu.cn

Dr. Kay Chen Tan, National University of Singapore. Email: eletankc#nus.edu.sg

Email: change # to @

Related Resources

IJCAI 2019   International Joint Conference on Artificial Intelligence
PAKDD 2019   Pacific-Asia Conference on Knowledge Discovery and Data Mining
ICDMML 2019   2019 International Conference on Data Mining and Machine Learning
ISMSI--Ei, Scopus 2019   2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence (ISMSI 2019)--Ei Compendex, Scopus
iDSC 2019   International Data Science Conference
Ei ICEPOE 2019   2019 3rd International Conference on Engineering Physics and Optoelectronic Engineering (ICEPOE 2019)
IJAB 2018   International Journal of Advances in Biology
ACM--ICISDM--Ei and Scopus 2019   ACM--2019 3rd International Conference on Information System and Data Mining (ICISDM 2019)--Ei Compendex and Scopus
JoL 2018   International Journal of Law
KGSWC 2019   1st Iberoamerican Knowledge Graph and Semantic Web Conference