posted by user: xinghao || 4667 views || tracked by 22 users: [display]

Big Learning 2013 : NIPS 2013 Workshop on Big Learning: Advances in Algorithms and Data Management

FacebookTwitterLinkedInGoogle

Link: http://biglearn.org/
 
When Dec 9, 2013 - Dec 9, 2013
Where Lake Tahoe, NV
Submission Deadline Oct 25, 2013
Categories    big data   machine learning   database systems   artificial intelligence
 

Call For Papers

*Submission deadline extended to Oct 25, 2013*

Big Learning 2013: Advances in Algorithms and Data Management
NIPS 2013 Workshop (http://www.biglearn.org)

ORGANIZERS:

Xinghao Pan (UC Berkeley)
Haijie Gu (Carnegie Mellon University)
Joseph Gonzalez (UC Berkeley)
Sameer Singh (University of Washington)
Yucheng Low (GraphLab)

Submissions are solicited for a one day workshop on December 9th at Lake Tahoe, Nevada.

This workshop will address algorithms, systems, and real-world problem domains related to large-scale machine learning (“Big Learning”). Big Learning has attracted intense interest, with active research spanning diverse fields. In particular, the machine learning and databases have taken distinct approaches by developing new algorithms and data management systems. This workshop will bring together experts across these diverse communities to discuss recent progress, share tools and software, identify pressing new challenges, and to exchange new ideas. Topics of interest include (but are not limited to):

- Scalable Data Systems: Systems for large-scale parallel or distributed learning; implementations of machine learning models and algorithms in database management systems (DBMS); insights and discussions on properties (availability, scalability, correctness, etc.), strengths, and limitations of databases for Big Learning.

- Big Data: Methods for managing large, unstructured, and/or streaming data; cleaning, visualization, interactive platforms for data understanding and interpretation; sketching and summarization techniques; sources of large datasets.

- Models & Algorithms: Machine learning algorithms for parallel, distributed, GPGPUs, or other novel architectures; theoretical analysis; distributed online algorithms; implementation and experimental evaluation; methods for distributed fault tolerance.

- Applications of Big Learning: Practical application studies and challenges of real-world system building; insights on end-users, common data characteristics (stream or batch); trade-offs between labeling strategies (e.g., curated or crowd-sourced).

Submissions should be written as extended abstracts, no longer than 4 pages (excluding references) in the NIPS latex style. Relevant work previously presented in non-machine-learning conferences is strongly encouraged, though submitters should note this in their submission.

Submission Deadline: October 25th, 2013.

Please refer to the website for detailed submission instructions: http://biglearn.org/index.php/AuthorInfo

Related Resources

NIPS 2018   The Thirty-second Annual Conference on Neural Information Processing Systems
IJCAI 2019   International Joint Conference on Artificial Intelligence
ICDM 2019   19th Industrial Conference on Data Mining ICDM 2019
ICCV 2019   International Conference on Computer Vision
SI:Cont-IoT 2019   Context-aware Computing for the Internet of Things: Trends and Challenges
ICML 2019   36th International Conference on Machine Learning
ICCMIT 2019   Special Session on Advances in Data Science Theory and Interdisciplinary Applications - 5th International Conference on Communication, Management and Information Technology
ICDMML 2019   【ACM ICPS EI SCOPUS】2019 International Conference on Data Mining and Machine Learning
MLDM 2019   15th International Conference on Machine Learning and Data Mining MLDM 2019
DSA 2019   The Frontiers in Intelligent Data and Signal Analysis DSA 2019