posted by user: kalyanv || 2971 views || tracked by 15 users: [display]

NIPS- DDE 2013 : NIPS Workshop on Data Driven Education

FacebookTwitterLinkedInGoogle

Link: http://lytics.stanford.edu/datadriveneducation/
 
When Dec 9, 2013 - Dec 9, 2013
Where Lake Tahoe, Nevada, USA
Submission Deadline Oct 9, 2013
Notification Due Oct 23, 2013
Final Version Due Oct 28, 2013
Categories    education   machine learning   moocs
 

Call For Papers

It is our pleasure to invite contributions to the NIPS 2013 Workshop on

Data Driven Education
December 9-10, 2013
Lake Tahoe, Nevada, USA
http://lytics.stanford.edu/datadriveneducation

Important Dates:
+ Paper Submission --- October 9th, 2013
+ Author notification --- October 23rd, 2013
+ Camera ready deadline for accepted submissions --- October 28th, 2013
+ Finalized workshop schedule out --- October 30th, 2013
+ Data Driven Ed Workshop --- December 9th or 10th, 2013 (TBA)

Workshop Description:
Given the incredible technological leaps that have changed so many
aspects of our lives in the last hundred years, it's surprising that
our approach to education today is much the same as it was a century
ago. While successful educational technologies have been developed
and deployed in some areas, we have yet to see a widespread
disruption in teaching methods at the primary, secondary, or
post-secondary levels. However, as more and more people gain access
to broadband internet, and new technology-based learning
opportunities are introduced, we may be witnessing the beginnings of
a revolution in educational methods. In the realm of higher
education, rising college tuition accompanied with cuts in funding to
schools and an ever increasing world population that desires
high-quality education at low cost has spurred the need to use
technology to transform how we deliver education.

With these technology-based learning opportunities, the rate at
which educational data is being collected has also exploded in recent
years as an increasing number of students have turned to online
resources, both at traditional universities as well as massively
open-access online courses (MOOCs) for formal or informal learning.
This change raises exciting challenges and possibilities particularly
for the machine learning and data sciences communities.

These trends and changes are the inspiration for this workshop, and
our first goal is to highlight some of the exciting and impactful
ways that our community can bring tools from machine learning to bear
on educational technology. Some examples include (but are not limited
to) the following:

+ Adaptive and personalized education
+ Assessment: automated, semi-automated, and peer grading
+ Gamification and crowdsourcing in learning
+ Large scale analytics of MOOC data
+ Multimodal sensing
+ Optimization of pedagogical strategies and curriculum design
+ Content recommendation for learners
+ Interactive Tutoring Systems
+ Intervention evaluations and causality modeling
+ Supporting collaborative and social learning
+ Data-driven models of human learning

The second goal of the workshop is to accelerate the progress of
research in these areas by addressing the challenges of data
availability. At the moment, there are several barriers to entry
including the lack of open and accessible datasets as well as
unstandardized formats for such datasets. We hope that by (1)
surveying a number of the publicly available datasets, and (2)
proposing ways to distribute other datasets such as MOOC data in a
spirited panel discussion we can make real progress on this issue as
a community, thus lowering the barrier for researchers aspiring to
make a big impact in this important area.

Target Audience
+ Researchers interested in analyzing and modeling educational data,
+ Researchers interested in improving or developing new data-driven educational technologies,
+ Others from the NIPS community curious about the trends in online education and the opportunities for machine learning research in this rapidly-developing area.

Confirmed speakers:
+ Ken Koedinger, CMU
+ Andrew Ng, Coursera
+ Peter Norvig, Google
+ Zoran Popovic, UW
+ Jascha Sohl-Dickstein, Stanford/Khan Academy
+ Daniel Seaton, MIT/EdX

Confirmed Panelists:
+ Eliana Feasley, Khan Academy,
+ Una-May O'Reilly, MIT,
+ and well as the invited speakers.

Organizers:
+ Jonathan Huang, Stanford (jhuang11@stanford.edu)
+ Sumit Basu, Microsoft Research (sumitb@microsoft.com)
+ Kalyan Veeramachaneni, CSAIL, MIT (kalyan@csail.mit.edu)

Submission details:
Submissions should follow the NIPS format and are encouraged to be
up to six pages. Papers submitted for review do not need to be
anonymized. There will be no official proceedings, but the accepted
papers will be made available on the workshop website. Accepted
papers will be either presented (both) as a poster and a short
spotlight presentation. We welcome submissions on novel research work
as well as extended abstracts on work recently published or under
review in another conference or journal (please state the venue of
publication in the latter case); we encourage submission of visionary
position papers on the emerging trends in data driven education.
Please submit papers in PDF format to nipsdde2013@gmail.com.

For more information, please visit:
http://lytics.stanford.edu/datadriveneducation

Related Resources

NIPS 2017   The Thirty-first Annual Conference on Neural Information Processing Systems
ICPR 2018   24th International Conference on Pattern Recognition
ADAH 2017   Advanced Data Analytics in Health
ECCV 2018   European Conference on Computer Vision
ETHE Blearning 2017   Blended learning in higher education: research findings
NAACL HLT 2018   The 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
NIPS 2018   The Thirty-second Annual Conference on Neural Information Processing Systems
MLDM 2018   14th International Conference on Machine Learning and Data Mining MLDM 2018
NIPS IEVDL 2017   NIPS 2017 Workshop: Interpreting, Explaining and Visualizing Deep Learning - Now what ?
NIPS ML4H 2017   NIPS Workshop on Machine Learning for Health