posted by user: shicheng || 2567 views || tracked by 23 users: [display]

IJSIR 2014 : IJSIR Special Issue on Swarm Intelligence in Big Data Analytics

FacebookTwitterLinkedInGoogle

 
When N/A
Where N/A
Submission Deadline Jan 1, 2014
Categories    swarm intelligence   big data analytics   evolutionary computation   data mining
 

Call For Papers

Nowadays, the big data has attracted attentions from more and more researchers. The big data is defined as the dataset whose size is beyond the processing ability of typical database or computers. The big data analytics is to automatically extract knowledge from large amounts of data. It can be seen as mining or processing of massive data, and “useful” information could be retrieved from large dataset. The properties of big data analytics can be concentrated in three parts: large volume, variety of different sources, and fast increasing speed, i.e., velocity. The algorithms should be effective to solve large-scale, dynamic the big data analytics problems.

Swarm intelligence (SI), which is based on a population of individuals, is a collection of nature-inspired searching techniques. To search a problem domain, a swarm intelligence algorithm processes a population of individuals. Each individual represents a potential solution of the problem being optimized. In swarm intelligence, an algorithm maintains and successively improves a population of potential solutions until some stopping condition is met. The solutions are initialized randomly in the search space, and are guided toward the better and better areas through the interaction among solutions over iterations.

The swarm intelligence algorithms have shown significant achievements on solving large scale, dynamical, and multi-objective problems. With the application of the swarm intelligence, more rapid and effective methods can be designed to solve big data analytics problems.

This special issue aims at fostering the latest development of Swarm Intelligence Techniques for Big Data analytics problems. Original contributions that provide novel theories, frameworks, and solutions to challenging problems of Big Data analytics are very welcome for this Special Issue. Potential topics include, but are not limited to:

The use of swarm intelligence techniques such as:
1. Ant colony optimization
2. Artificial immune system
3. Brain Storm Optimization
4. Cultural algorithm
5. Differential Evolution
6. Fireworks Algorithm
7. Particle swarm optimization
In / for
1. Active learning on big data
2. Advertising on the Web
3. Anomaly detection in big data
4. Data size and feature space adaptation
5. Distributed learning techniques in uncertain environment
6. Distributed parallel computation
7. Feature selection/extraction in big data
8. Frequent Itemsets Analysis
9. Imbalance learning on big data
10. Incremental Learning
11. Link Analysis
12. Sample selection based on uncertainty
13. Uncertainty in cloud computing
14. Uncertainty modeling in learning from big data
15. Uncertainty techniques in big data classification/clustering
16. Massive data categorization/Clustering
17. Mining Data Streams
18. Mining Social-Network Graphs
19. Recommendation Systems
20. Reinforcement learning on big data

Manuscripts must be prepared according to the instructions of the “Guidelines for Submission” of the journal, available at: http://www.igi-global.com/journals/guidelines-for-submission.aspx.
Please submit your papers via emails to one of guest co-editors, Dr. Shi Cheng at shi.cheng@nottingham.edu.cn, or Dr. Ruibin Bai at ruibin.bai@nottingham.edu.cn. Submitted papers will be reviewed by at least three reviewers. The submission of a manuscript implies that it is the authors' original unpublished work and has not being submitted for possible publication elsewhere.

Important Date
January 1, 2014: Submission deadline.
March 1, 2014: Notice of the first round review.
April 1, 2014: Revision due
May 1, 2014: Final notice of acceptance/reject
June 1, 2014: Final manuscript due.

Guest Editors
Dr. Shi Cheng, University of Nottingham Ningbo, China.
Email: shi.cheng@nottingham.edu.cn
Dr. Ruibin Bai, University of Nottingham Ningbo, China.
Email: ruibin.bai@nottingham.edu.cn
Dr. Kay Chen Tan, National University of Singapore.
Email: eletankc@nus.edu.sg

Related Resources

MLDM 2016   Machine Learning and Data Mining in Pattern Recognition
ICDE 2016   International Conference on Data Engineering
Big Data 2016   International Conference on Big Data
PAKDD 2016   The 20th Pacific-Asia Conference on Knowledge Discovery and Data Mining
STREAMS 2015   Special Issue on Software Architectures and Systems for Real Time Data Stream Analytics
ISICS 2016   International Symposium on Intelligent Computing Systems
ICSC 2016   Tenth IEEE International Conference on Semantic Computing
ci4bigdata 2016   IEEE Computational Intelligence Magazine (IEEE CIM) special issue on Computational Intelligence for Big Social Data Analysis
TMLAI 2015   Transactions on Machine Learning and Artificial Intelligence
SIAMSNDS 2015   Special Issues: Analyzing and Mining Social Networks for Decision Support