posted by user: sameer || 6492 views || tracked by 15 users: [display]

Big Learning 2011 : NIPS 2011 Workshop on Algorithms, Systems, and Tools for Learning at Scale

FacebookTwitterLinkedInGoogle

Link: http://www.biglearn.org
 
When Dec 16, 2011 - Dec 17, 2011
Where Sierra Nevada, Spain
Submission Deadline Oct 7, 2011
Notification Due Nov 1, 2011
Final Version Due Nov 25, 2011
Categories    machine learning   artificial intelligence   parallel & distributed systems   large scale
 

Call For Papers

Big Learning: Algorithms, Systems, and Tools for Learning at Scale

NIPS 2011 Workshop (http://www.biglearn.org)

Submissions are solicited for a two day workshop December 16-17 in Sierra Nevada, Spain.

This workshop will address tools, algorithms, systems, hardware, and real-world problem domains related to large-scale machine learning (“Big Learning”). The Big Learning setting has attracted intense interest with active research spanning diverse fields including machine learning, databases, parallel and distributed systems, parallel architectures, and programming languages and abstractions. This workshop will bring together experts across these diverse communities to discuss recent progress, share tools and software, identify pressing new challenges, and to exchange new ideas. Topics of interest include (but are not limited to):

* Hardware Accelerated Learning: Practicality and performance of specialized high-performance hardware (e.g. GPUs, FPGAs, ASIC) for machine learning applications.

* Applications of Big Learning: Practical application case studies; insights on end-users, typical data workflow patterns, common data characteristics (stream or batch); trade-offs between labeling strategies (e.g., curated or crowd-sourced); challenges of real-world system building.

* Tools, Software, & Systems: Languages and libraries for large-scale parallel or distributed learning. Preference will be given to approaches and systems that leverage cloud computing (e.g. Hadoop, DryadLINQ, EC2, Azure), scalable storage (e.g. RDBMs, NoSQL, graph databases), and/or specialized hardware (e.g. GPU, Multicore, FPGA, ASIC).

* Models & Algorithms: Applicability of different learning techniques in different situations (e.g., simple statistics vs. large structured models); parallel acceleration of computationally intensive learning and inference; evaluation methodology; trade-offs between performance and engineering complexity; principled methods for dealing with large number of features;

We suggest keeping the paper under 4 pages (NOT including references) in the NIPS latex style. For projects that require more room for descriptions, we encourage the authors to include details of the work as appendix and/or other supplementary materials. Relevant work previously presented in non-machine-learning conferences is strongly encouraged. Exciting work that was recently presented is allowed, provided that the extended abstract mentions this explicitly.

Submission Deadline: October 7th, 2011.
Please refer to the website for detailed submission instructions: http://biglearn.org/index.php/AuthorInfo

Related Resources

MLDM 2023   18th International Conference on Machine Learning and Data Mining
JCRAI 2022-Ei Compendex & Scopus 2022   2022 International Joint Conference on Robotics and Artificial Intelligence (JCRAI 2022)
IEEE SSCI 2023   2023 IEEE Symposium Series on Computational Intelligence
AAAI 2023   The 37th AAAI Conference on Artificial Intelligence
Smart Cities 2022   Smart Cities: Urban Profiling with Artificial Intelligence and Big Data
IJCNN 2023   International Joint Conference on Neural Networks
IDITR-Chengdu 2023   2023 2nd International Conference on Innovations and Development of Information Technologies and Robotics (IDITR 2023)
CFDSP 2023   2023 International Conference on Frontiers of Digital Signal Processing (CFDSP 2023)
ACM-Ei/Scopus-ITNLP 2022   2022 2nd International Conference on Information Technology and Natural Language Processing (ITNLP 2022) -EI Compendex
CFMAI 2022   2022 4th International Conference on Frontiers of Mathematics and Artificial Intelligence (CFMAI 2022)