posted by organizer: cferreira || 1647 views || tracked by 3 users: [display]

LearnTeD 2023 : Learning from Temporal Data - DSAA 2023


When Oct 9, 2023 - Oct 13, 2023
Where Thessaloniki, Greece
Submission Deadline May 22, 2023
Notification Due Jul 17, 2023
Final Version Due Aug 7, 2023
Categories    learning from temporal data   time series   data mining   machine learning

Call For Papers


Learning from Temporal Data (LearnTeD)

special session of the
10th IEEE International Conference on Data Science and Advanced Analytics (DSAA 2023)

October 9-13, 2023, Thessaloniki, Greece

Website link:

Aims and Scope
Temporal information is all around us. Numerous important fields, including weather
and climate, ecology, transport, urban computing, bioinformatics, medicine, and finance,
routinely work with temporal data. Temporal data present a number of new challenges,
including increased dimensionality, drifts, complex behavior in terms of long-term
interdependence, and temporal sparsity, to mention a few. Hence, learning from temporal
data requires specialized strategies that are different from those used for static data.
Continuous cross-domain knowledge exchange is required since many of these difficulties
cut over the lines separating various fields. This special session aims to integrate the
research on learning from temporal data from various areas and to synthesize new concepts
based on statistical analysis, time series analysis, graph analysis, signal processing,
and machine learning.

The scope of the special session includes but is not limited to the following:
- Temporal data clustering
- Classification and regression of univariate and multivariate time series
- Early classification of temporal data
- Deep learning for temporal data
- Learning representation for temporal data
- Metric and kernel learning for temporal data
- Modeling temporal dependencies
- Time series forecasting
- Time series annotation, segmentation, and anomaly detection
- Spatial-temporal statistical analysis
- Functional data analysis methods
- Data streams
- Interpretable/explainable time-series analysis methods
- Dimensionality reduction, sparsity, algorithmic complexity, and big data challenges
- Benchmarking and assessment methods for temporal data
- Applications, including transport, urban computing, weather and climate, ecology,
bio-informatics, medical, and energy consumption on temporal data

Submission procedure
All papers should be submitted electronically via EasyChair (under the “Special Session” Track):

The length of each paper submitted to the Research tracks should be no more than ten (10) pages
and should be formatted following the standard 2-column U.S. letter style of the IEEE Conference
template. For further information and instructions, see the IEEE Proceedings Author Guidelines.

All submissions will be blind-reviewed by the Program Committee on the basis of technical quality,
relevance to the conference’s topics of interest, originality, significance, and clarity. Author
names and affiliations must not appear in the submissions, and bibliographic references must be
adjusted to preserve author anonymity. Submissions failing to comply with paper formatting and
authors’ anonymity will be rejected without reviews.

Because of the double-blind review process, non-anonymous papers that have been issued as technical
reports or similar cannot be considered for DSAA’2023. An exception to this rule applies to arXiv
papers that were published in arXiv at least a month prior to the DSAA’2023 submission deadline.
Authors can submit these arXiv papers to DSAA provided that the submitted paper’s title and abstract
are different from the one appearing in arXiv.

All accepted full-length special session papers will be published by IEEE in the DSAA main conference
proceedings under its Special Session scheme. All papers will be submitted for inclusion in the
IEEEXplore Digital Library.

High-quality accepted papers will be recommended to a Special Issue of the International Journal of
Data Science and Analytics on "Learning from temporal data" through a fast-track process.

Important Dates
Paper Submission Deadline: May 29, 2023
Paper Notification: July 17, 2023
Camera-ready Submission: August 7, 2023

Organizing Committee

Track Chairs
Albert Bifet, Waikato University, New Zealand
João Mendes Moreira, University of Porto & LIAAD-INESC TEC, Portugal
Joydeep Chandra, Indian Institute of Technology Patna, India

Program Committee
Animesh Chaturvedi, IIIT Dharwad, India
Balaraman Ravindran, IIT Madras, India
Bivas Mitra, IIT Kharagpur, India
Carlos Abreu Ferreira, INESC TEC, Portugal
Debraj Das, IIT Bombay, India
Heitor Murilo Gomes, Victoria University of Wellington, New Zealand
Ingo Scholtes, University of Würzburg, Germany
Maria Eduarda Silva, Universidade do Porto, Portugal
Mirco Nanni, ISTI-CNR, Italy
Nuno Moniz, University of Notre Dame, USA
Paulo Cortez, Universidade do Minho, Portugal
Raquel Menezes, Universidade do Minho, Portugal
Rita Ribeiro, Universidade do Porto, Portugal
Sourangshu Bhattacharya, IIT Kharagpur, India
Srijith P.K., IIT Hyderabad, India
Vitor Cerqueira, Dalhousie University, Canada

Publicity Chairs
Carlos Abreu Ferreira, Instituto Politécnico do Porto, Portugal
Shruti Saxena, Indian Institute of Technology Patna, India

Organizing Committee Contact Person:

Related Resources

LearnTeD 2024   Learning from Temporal Data (LearnTeD) - DSAA 2024
AAAI 2025   The 39th Annual AAAI Conference on Artificial Intelligence
DSIT 2024   2024 7th International Conference on Data Science and Information Technology (DSIT 2024)
Ei/Scopus-AACIP 2024   2024 2nd Asia Conference on Algorithms, Computing and Image Processing (AACIP 2024)-EI Compendex
Ei/Scopus-ACAI 2024   2024 7th International Conference on Algorithms, Computing and Artificial Intelligence(ACAI 2024)
AMLDS 2025   2025 International Conference on Advanced Machine Learning and Data Science
IEEE-Ei/Scopus-SGGEA 2024   2024 Asia Conference on Smart Grid, Green Energy and Applications (SGGEA 2024) -EI Compendex
JDSA-LearnTeD 2024   JDSA special isssue on Learning from Temporal data
ICMLA 2024   23rd International Conference on Machine Learning and Applications
Ei/Scopus- DMCSE 2024   2024 International Conference on Data Mining, Computing and Software Engineering (DMCSE 2024)