Recent advances in Natural Language Processing, and the emergence of pretrained Large Language Models (LLM) specifically, have made NLP systems omnipresent in various aspects of our everyday life. In addition to traditional examples such personal voice assistants, recommender systems, etc, more recent developments include content-generation models such as ChatGPT, text-to-image models (Dall-E), and so on. While these emergent technologies have an unquestionable potential to power various innovative NLP and AI applications, they also pose a number of challenges in terms of their safe and ethical use . To address such challenges, NLP researchers have formulated various objectives, e.g., intended to make models more fair, safe, and privacy-preserving. However, these objectives are often considered separately, which is a major limitation since it is often important to understand the interplay and/or tension between them. For instance, meeting a fairness objective might require access to users’ demographic information, which creates tension with privacy objectives. The goal of this workshop is to move toward a more comprehensive notion of Trsutworthy NLP, by bringing together researchers working on those distinct yet related topics, as well as their intersection.
|