posted by user: BasStein || 666 views || tracked by 2 users: [display]

AABOH 2023 : Analysing algorithmic behaviour of optimisation heuristics - Workshop

FacebookTwitterLinkedInGoogle

Link: https://aaboh2023.nl/
 
When Jul 15, 2023 - Jul 19, 2023
Where Lisbon, Portugal
Submission Deadline Apr 11, 2023
Notification Due Apr 25, 2023
Final Version Due May 2, 2023
Categories    evolutionary computation   algorithm analysis   algorithm behaviour   optimisation heuristics
 

Call For Papers

--- Introduction ---

Optimisation and Machine Learning tools are among the most used tools in the modern world with their omnipresent computing devices. Yet, while both these tools rely on search processes (search for a solution or a model able to produce solutions), their dynamics have not been fully understood. This scarcity of knowledge on the inner workings of heuristic methods is largely attributed to the complexity of the underlying processes, which cannot be subjected to a complete theoretical analysis. However, this is also partially due to a superficial experimental setup and, therefore, a superficial interpretation of numerical results. In fact, researchers and practitioners typically only look at the final result produced by these methods. Meanwhile, a great deal of information is wasted in the run. In light of such considerations, it is now becoming more evident that such information can be useful and that some design principles should be defined that allow for online or offline analysis of the processes taking place in the population and their dynamics.

Hence, with this workshop, we call for both theoretical and empirical achievements identifying the desired features of optimisation and machine learning algorithms, quantifying the importance of such features, spotting the presence of intrinsic structural biases and other undesired algorithmic flaws, studying the transitions in algorithmic behaviour in terms of convergence, any-time behaviour, traditional and alternative performance measures, robustness, exploration vs exploitation balance, diversity, algorithmic complexity, etc., with the goal of gathering the most recent advances to fill the aforementioned knowledge gap and disseminate the current state-of-the-art within the research community.
Thus, we encourage submissions exploiting carefully designed experiments or data-heavy approaches that can come to help in analysing primary algorithmic behaviours and modelling internal dynamics causing them.

--- Topics---

We encourage submissions exploiting carefully designed experiments or data-heavy approaches that can come to help in analysing primary algorithmic behaviours and modelling internal dynamics causing them. As an indication, some (but not all) relevant topics of interests are reported in the list below:

global search vs. local search,
exploration vs. exploitation,
time and space complexity,
premature convergence and stagnation,
structural bias,
genotypic or phenotypic diversity,
robustness of the produced solution,
secondary benchmarking,
anytime performance.
All accepted papers of this workshop will be included in the ACM Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’23) Companion Volume.

Related Resources

ICAISC 2024   International Conference on Artificial Intelligence and Soft Computing
BESC 2023   10th International Conference on Behavioural and Social Computing
IEA/AIE 2024   37th International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems
BlackboxNLP 2023   The 6th Workshop on Analysing and Interpreting Neural Networks for NLP
evostar 2024   EvoStar 2024 - The Leading European Event on Bio‑Inspired Computation
GENEA 2023   Generation and Evaluation of Non-verbal Behaviour for Embodied Agents Workshop 2023
EuroGP 2024   EuroGP 24 - the 27th European Conference on Genetic Programming
SI:Tourist_Trip_Planning 2023   Special Issue on ''Tourist Trip Planning: Algorithmic Foundations''
EvoCOP 2023   Evolutionary Computation in Combinatorial Optimization
SwarmEvo 2023   Special Issue: Peak and Bad-Case Performance of Swarm and Evolutionary Optimization Algorithms