posted by user: BasStein || 160 views || tracked by 1 users: [display]

AABOH 2023 : Analysing algorithmic behaviour of optimisation heuristics - Workshop

FacebookTwitterLinkedInGoogle

Link: https://aaboh2023.nl/
 
When Jul 15, 2023 - Jul 19, 2023
Where Lisbon, Portugal
Submission Deadline Apr 11, 2023
Notification Due Apr 25, 2023
Final Version Due May 2, 2023
Categories    evolutionary computation   algorithm analysis   algorithm behaviour   optimisation heuristics
 

Call For Papers

--- Introduction ---

Optimisation and Machine Learning tools are among the most used tools in the modern world with their omnipresent computing devices. Yet, while both these tools rely on search processes (search for a solution or a model able to produce solutions), their dynamics have not been fully understood. This scarcity of knowledge on the inner workings of heuristic methods is largely attributed to the complexity of the underlying processes, which cannot be subjected to a complete theoretical analysis. However, this is also partially due to a superficial experimental setup and, therefore, a superficial interpretation of numerical results. In fact, researchers and practitioners typically only look at the final result produced by these methods. Meanwhile, a great deal of information is wasted in the run. In light of such considerations, it is now becoming more evident that such information can be useful and that some design principles should be defined that allow for online or offline analysis of the processes taking place in the population and their dynamics.

Hence, with this workshop, we call for both theoretical and empirical achievements identifying the desired features of optimisation and machine learning algorithms, quantifying the importance of such features, spotting the presence of intrinsic structural biases and other undesired algorithmic flaws, studying the transitions in algorithmic behaviour in terms of convergence, any-time behaviour, traditional and alternative performance measures, robustness, exploration vs exploitation balance, diversity, algorithmic complexity, etc., with the goal of gathering the most recent advances to fill the aforementioned knowledge gap and disseminate the current state-of-the-art within the research community.
Thus, we encourage submissions exploiting carefully designed experiments or data-heavy approaches that can come to help in analysing primary algorithmic behaviours and modelling internal dynamics causing them.

--- Topics---

We encourage submissions exploiting carefully designed experiments or data-heavy approaches that can come to help in analysing primary algorithmic behaviours and modelling internal dynamics causing them. As an indication, some (but not all) relevant topics of interests are reported in the list below:

global search vs. local search,
exploration vs. exploitation,
time and space complexity,
premature convergence and stagnation,
structural bias,
genotypic or phenotypic diversity,
robustness of the produced solution,
secondary benchmarking,
anytime performance.
All accepted papers of this workshop will be included in the ACM Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’23) Companion Volume.

Related Resources

GECCO 2023   Genetic and Evolutionary Computation Conference
EvoCOP 2023   Evolutionary Computation in Combinatorial Optimization
AFair-AMLD 2023   Workshop on Algorithmic Fairness in Artificial intelligence, Machine learning and Decision making (In conjuction with SIAM Data Mining - SDM23)
ECTA 2023   15th International Conference on Evolutionary Computation Theory and Applications
ALA 2023   Adaptive and Learning Agents Workshop 2023
SAND 2023   2nd Symposium on Algorithmic Foundations of Dynamic Networks
GI @ ICSE 2023   12th International Workshop on Genetic Improvement
NOTION 2023   The Seventh Workshop on: Human Behaviour Monitoring, Interpretation and Understanding
Bias 2023   Fourth International Workshop on Algorithmic Bias in Search and Recommendation
SI:Tourist_Trip_Planning 2023   Special Issue on ''Tourist Trip Planning: Algorithmic Foundations''