posted by organizer: Anastasija_Nikiforova_AN || 1094 views || tracked by 3 users: [display]

MegaData 2023 : The Third International Workshop on Advanced Data Systems Management, Engineering, and Analytics (MegaData)

FacebookTwitterLinkedInGoogle

Link: https://megadata.cs.ut.ee/
 
When May 1, 2023 - May 4, 2023
Where Bangalore, India
Submission Deadline Dec 10, 2022
Notification Due Feb 10, 2023
Final Version Due Mar 17, 2023
Categories    big data   internet of things   federated learning   edge computing
 

Call For Papers

MegaData Overview

Under the exponential growth of Big Data (BD) from different sources, managing, engineering, and designing Data systems, gaining meaningful insights is a significant challenge. The current generation of data engineers and architects works tirelessly to satisfy the accelerating demand for data-driven innovations. Questions like: How to thrive data as the foundation for advanced Databases and Information Systems? And what will the next generation of Data systems look like? Will lead the discussion on the latest trends in modern data systems. MegaData workshop aims to report on the advances and trends in BD deployment models and environments from both the infrastructure and application levels. Papers presenting recent results, research issues, practical applications, case studies, and industrial implementations are welcome. Moreover, the submission of ongoing research, position, visionary, and student papers are encouraged to fuel up the discussion.


MegaData Aims

Data is growing explosively, and several systems have emerged to store, process, and analyze such large-scale amounts of data. These “Big data systems” are fast evolving to meet the practitioners’ demand from both industry and academia alike. Examples include the NoSQL systems, Hadoop stack, Apache Spark, data analytics platforms, search and indexing platforms, and deployment infrastructures. These systems address needs for structured and unstructured data across a wide spectrum of domains and applications ranging from NoSQL and batch processing to micro-batch processing and stream data processing frameworks.

The MegaData workshop’s objective is to bring together researchers, practitioners, system administrators, system programmers, and others interested in sharing and presenting their perspectives on the effective management of big data systems. The focus of the workshop is on a novel and practical, systems-oriented work. MegaData offers an opportunity to showcase the latest advances in this area and discuss and identify future directions and challenges in management and engineering of big data systems.
Topics

Big Data (BD) platforms have a long tradition of leveraging trends and technologies from the broader computing community. For several years, dedicated servers over the cloud have been employed as the dominant paradigm. However, in recent years, that model was shifted towards the network Edge, closer to data sources. MegaData covers the area of BD operations (management, engineering, and analytics) within Cloud and Edge computing models. Also, it aims to report on the advances and trends in BD deployment architectures from both the infrastructure and application levels. Papers presenting recent results, research issues, practical applications, case studies, and industrial implementations are welcome.


Specific topics of interest include, but are not limited, to the following:

Resource management and scheduling mechanisms for data systems
Auto Scaling and elastic scaling approaches and mechanisms
Data governance and privacy of “data in motion” and “data at rest” over edge/cloud
Emerging Data deployment models in IoT, IoT-to-Cloud, Edge/fog
Federated Learning and edge intelligence for big data systems
Advances data storage models, including object stores and key-value stores
Techniques for data integrity, availability, reliability, and fault tolerance
Big Data workflows (data management, data wrangling, automated workflows)
Data pipeline (data lake to analytics, new data stream architectures, edge/fog, cloud-enabled solutions)
High-performance Data Analytics applications
Adaptive offloading techniques among Fog, Edge, and Cloud Computing


Program Committee Members (tentative)

José Carlos Cabaleiro Domínguez, University of Santiago de Compostela, Spain.
Pablo Rodríguez-Mier, INRAE, France
Manisha Sirsat, INESC, Portugal
Arturo Gonzalez-Escribano, Universiadad de Valladolid, Spain
James Benson University of Texas at San Antonio, USA
Rosa Filgueira, EPCC, The University of Edinburgh, UK
Sattam Almatarneh, Middle East University, Jordan.
Said Alawadi, Uppsala University, Sweden.
Syed Attique Shah, Birmingham City University, UK
Pablo Caderno, University of Santiago de Compostela, Spain
Ahmad Aburomman, University de A Crouna, Spain
Maanak Gupta Assistant Professor, Tennessee Technological University, USA
Mohamed Ragab, University of Tartu, Estonia
Houshyar Honar Pajooh, Masey University, New Zealand
Xoan C. Pardo, Universidade da Coruña, Spain
Jose R.R. Viqueira, Universidade de Santiago de Compostela, Spain


Important dates

Paper submission: December 10th, 2022
Acceptance notification: February 10th, 2023
Camera ready submission: March 17th, 2023
Conference Dates: May 1st, 2023


MegaData Chairs

Yaser Jararweh, Associate Professor of Computer Science. Duquesne University, USA https://www.duq.edu/academics/faculty/yaser-jararweh Contact: jararwehy@duq.edu
Feras M. Awaysheh, Assistant Professor of Big Data Systems, University of Tartu,
Estonia https://bigdata.cs.ut.ee/feras-m-awaysheh Contact: feras.awaysheh@ut.ee
Moath Jarrah, Assistant Professor of computer science. School of Technology, Eastern
Illinois University, USA Contact: mhjarrah@eiu.edu

Publicity Chair

Anastasija Nikiforova, Assistant Professor of Data Systems. University of Tartu, Estonia https://anastasijanikiforova.com/ Contact: nikiforova.anastasija@gmail.com

Publication Chair

Sadi Alawadi, Assistant Professor of Machine Learning at Halmstad University, Sweden https://www.hh.se/pdben?person=1373CD0A-4A9D-4E8D-A94E-822025718733 Contact: sadi.alawadi@hh.se

Web Master

Feras M. Awaysheh, Assistant Professor of Big Data Systems, University of Tartu, Estonia https://bigdata.cs.ut.ee/feras-m-awaysheh Contact: feras.awaysheh@ut.ee


Related Resources

EI/Scopus-PRDM 2024   2024 5th International Conference on Pattern Recognition and Data Mining(PRDM 2024)
ICMLA 2024   23rd International Conference on Machine Learning and Applications
MegaData 2024   The Fourth International Symposium on Advanced Data Systems Management, Engineering, Analytics (MegaData)
Ei/Scopus-AACIP 2024   2024 2nd Asia Conference on Algorithms, Computing and Image Processing (AACIP 2024)-EI Compendex
ICGDA 2025   2025 8th International Conference on Geoinformatics and Data Analysis (ICGDA 2025)
SPIE-Ei/Scopus-ITNLP 2024   2024 4th International Conference on Information Technology and Natural Language Processing (ITNLP 2024) -EI Compendex
DSIT 2024   2024 7th International Conference on Data Science and Information Technology (DSIT 2024)
IEEE-Ei/Scopus-SGGEA 2024   2024 Asia Conference on Smart Grid, Green Energy and Applications (SGGEA 2024) -EI Compendex
AMLDS 2025   2025 International Conference on Advanced Machine Learning and Data Science
WiMoA 2024   16th International Conference on Wireless, Mobile Network & Applications