posted by user: samy101 || 1194 views || tracked by 3 users: [display]

FATESys 2022 : Second ACM SIGEnergy Workshop on Fair, Accountable, Transparent, and Ethical (FATE) AI for Smart Environments and Energy Systems

FacebookTwitterLinkedInGoogle

Link: https://fatesys.github.io/2022/
 
When Nov 9, 2022 - Nov 10, 2022
Where Boston, Massachusetts, USA
Submission Deadline Sep 16, 2022
Notification Due Sep 30, 2022
Final Version Due Oct 7, 2022
Categories    fairness   interpretability   AI/ML   built environments
 

Call For Papers

With the advent of IoT, high performance computing, and ubiquitous and smart sensing, the SenSys/BuildSys community is noticing a big shift in the adoption of data-driven black-box modeling (also referred to as AI) to solve problems in the space of smart environments and energy systems. As a result, these AI-enabled systems for smart buildings, smart cities, smart grids, electric transportation, among others are attaining better accuracy and efficiency numbers every year. However, these data-driven black-box solutions are rarely held accountable for the impact of their actions on the human in the loop which significantly impacts their real-world adoption. To truly conceptualize the idea of smart systems for everyone, it is critical to study AI-enabled smart environments and energy systems to enforce energy equity and ensure not just clean and resilient energy systems, but also make them affordable and accessible for all. The second ACM SIGEnergy workshop on Fair, Accountable, Transparent, and Ethical AI for Smart Environments and Energy Systems intends to bring together researchers from diverse backgrounds and discuss key issues, challenges, breakthroughs, and socio-economic impact in developing fair, accountable, transparent and ethical AI techniques for smart environments and energy systems.

The aim of this workshop is to create a platform for the SenSys/BuildSys community to discuss developing AI-enabled smart environments and energy systems that are not just accurate but also take responsibility for their actions. We invite submissions including, but not limited to:

- Studies exploring type of biases in energy-related data and their implications
- Challenges in collecting representative data for fair training of the AI models
- Studies on eXplainable AI (XAI) for smart environments and energy systems
- Interpretable and explainable ML/AI models
- Physics-informed ML for model interpretation
- Innovative ML/AI models and their key limitations pertaining to FATE
- Socio-economic impact analysis for energy equity
- Fair metrics for the evaluation of ML/AI methods
- Exploring visual analytics for bias evaluation in data and models

Related Resources

XAI Conf 2025   3rd World Conference on eXplainable Artificial Intelligence
IEEE-Ei/Scopus-ITCC 2025   2025 5th International Conference on Information Technology and Cloud Computing (ITCC 2025)-EI Compendex
ACM SAC 2025   40th ACM/SIGAPP Symposium On Applied Computing
SPIE-Ei/Scopus-DMNLP 2025   2025 2nd International Conference on Data Mining and Natural Language Processing (DMNLP 2025)-EI Compendex&Scopus
IEEE-Ei/Scopus-CNIOT 2025   2025 IEEE 6th International Conference on Computing, Networks and Internet of Things (CNIOT 2025) -EI Compendex
ACM ICVARS 2025   ACM--2025 9th International Conference on Virtual and Augmented Reality Simulations (ICVARS 2025)
FLAIRS-ST XAI, Fairness, and Trust 2025   FLAIRS-38 Special Track on Explainable, Fair, and Trustworthy AI
SIGIR 2025   The 48th International ACM SIGIR Conference on Research and Development in Information Retrieval
CCS 2025   ACM Conference on Computer and Communications Security 2024 (round 2)
ACM MLPR 2025   ACM--2025 The 3rd International Conference on Machine Learning and Pattern Recognition (MLPR 2025)