posted by organizer: zhangyudong || 1369 views || tracked by 2 users: [display]

MLMHCIHCAMCI 2022 : Machine Learning Methods in High-Content Imaging and High-Content Analysis for Molecular and Cellular Imaging

FacebookTwitterLinkedInGoogle

Link: https://www.frontiersin.org/research-topics/40983/machine-learning-methods-in-high-content-imaging-and-high-content-analysis-for-molecular-and-cellula
 
When N/A
Where N/A
Abstract Registration Due Aug 6, 2022
Submission Deadline Oct 5, 2022
Notification Due Nov 5, 2022
Final Version Due Dec 5, 2022
Categories    molecular imaging   cellular image analysis   machine learning   high-content analysis
 

Call For Papers

High-content imaging (HCI) and high-content analysis (HCA) provide flexible scalability to molecular and cellular research. Particularly, HCA is a method that is used in biological research and drug discovery to identify substances such as small molecules, peptides, or RNAi that alter the phenotype of a cell in a desired manner. Both HCI and HCA feature modules to tackle the specific research including objectives, filters, imaging modes, environmental conditions, etc. Due to the revolution limit, more influential tools are desired for cellular and molecular imaging. On the other hand, the imaging systems are to be supported by modern software tools (including the machine learning tools) with modularity to handle HCIs and HCAs that are characterized by tremendous molecular data.

The living cell images along with software modules for HCA provide a quantum of cellular assays. These cellular assays increase the HCI’s throughput and enable medical experts to reach new medical findings and conclusions. The advent of novel machine learning (ML) tools and algorithms enables the user to analyse a large volume of data and perform HCA. Successful applications include analysis of stimulated trans-fluor cells, BPAE cells and mitochondria cells, neurite outgrowth segmentation, spheroid segmentation, granular object detection, nuclear puncta cell mask, heterogeneous cell population, focal-adhesion segmentation, cell cycle measuring, neuron detection, etc. Machine learning (ML) is a multi-disciplinary and interdisciplinary science, which uses computers as tools and is committed to simulating human learning methods in real-time. Recently, ML has achieved great success in cellular/molecular analysis.

This topic aims to report the recent advances in machine learning-guided HCI and HCA for molecular and cellular imaging addressing, but not limited to, the following themes:

• HCI systems

• Machine learning-related techniques in HCA

• Modularity in cellular/molecular imaging modes

• Statistical tools and data analytics in cellular/molecular imaging

• Prediction and classification algorithms for cellular/molecular imaging data

• Clinical diagnosis and treatment

• Neurite outgrowth segmentation

• Cell cycle measuring

• Exploration of cancer immunotherapy targets

• Cell metabolic analysis

Related Resources

Ei/Scopus-CDIVP 2025   2025 5th International Conference on Digital Image and Video Processing (CDIVP 2025)
IEEE-Ei/Scopus-SGGEA 2024   2024 Asia Conference on Smart Grid, Green Energy and Applications (SGGEA 2024) -EI Compendex
SPIE-Ei/Scopus-DMNLP 2025   2025 2nd International Conference on Data Mining and Natural Language Processing (DMNLP 2025)-EI Compendex&Scopus
AMLDS 2025   IEEE--2025 International Conference on Advanced Machine Learning and Data Science
IEEE Big Data - MMAI 2024   IEEE Big Data 2024 Workshop on Multimodal AI
ICSTTE 2025   2025 3rd International Conference on SmartRail, Traffic and Transportation Engineering (ICSTTE 2025)
Ei/Scopus-ACAI 2024   2024 7th International Conference on Algorithms, Computing and Artificial Intelligence(ACAI 2024)
MLPRIS 2025   The 7th Int'l Conference on Machine Learning, Pattern Recognition and Intelligent Systems
21st AIAI 2025   21st (AIAI) Artificial Intelligence Applications and Innovations
IEEE DSIT 2024   2024 IEEE 7th International Conference on Data Science and Information Technology (DSIT 2024)