posted by user: joaoms || 2049 views || tracked by 5 users: [display]

ORSUM 2022 : 5th Workshop on Online Recommender Systems and User Modeling (ACM RecSys 2022)

FacebookTwitterLinkedInGoogle

Link: https://orsum.inesctec.pt/orsum2022
 
When Sep 18, 2022 - Sep 23, 2022
Where Seattle, WA, USA
Submission Deadline Jul 21, 2022
Notification Due Aug 25, 2022
Final Version Due Sep 9, 2022
Categories    recommender systems   artificial intelligence   data science   machine learning
 

Call For Papers

Modern online services continuously generate data at very fast rates. This continuous flow of data encompasses content - e.g. posts, news, products, comments -, but also user feedback - e.g. ratings, views, reads, clicks -, together with context data. This can be overwhelming for systems and algorithms designed to train in batches, given the continuous and unpredictable rate of change of content, context and user preferences or intents, especially in long-term modeling. Therefore, it is important to investigate online methods able to transparently and robustly adapt to the multitude of dynamics of online services.


Incremental models and online learning methods are gaining attention in the recommender systems community, given their natural ability to deal with the continuous flows of data generated in dynamic, complex environments. The objective of this workshop is to foster contributions and bring together a growing community of researchers and practitioners interested in online, adaptive approaches to short- and long-term user modeling, recommendation and personalization, and their evaluation regarding multiple dimensions, such as fairness, privacy, explainability, and reproducibility.


Relevant topics include, but are not limited to:

- Stream-based and incremental algorithms
- Continual learning and forgetting
- Lifelong user modeling and recommendation
- User preference change detection and adaptation
- Context change detection and adaptation
- Session-based and sequential learning
- Online distributed and decentralized models
- Online learning with bandits and reinforcement learning
- Online learning from evolving graphs
- Online automated ML
- Online counterfactual learning
- Time-sensitive recommendation
- Privacy and user sovereignty in incremental models
- Interpretability of evolving models
- Online evaluation and benchmarking
- Bias evolution monitoring
- Reproducibility in online methods
- Scalability of online algorithms
- Platforms, software, data, and architectures
- Industrial case studies

Related Resources

BESC 2023   10th International Conference on Behavioural and Social Computing
IEEE COINS 2023   IEEE COINS 2023 - Berlin, Germany - July 23-25 - Hybrid (In-Person & Virtual)
UMAP 2023 LBRD 2023   UMAP ’23: 31st ACM Conference on User Modeling, Adaptation and Personalization: Call for Late-Breaking Results and Demos
JCRAI 2023-Ei Compendex & Scopus 2023   2023 International Joint Conference on Robotics and Artificial Intelligence (JCRAI 2023)
ADETBS 2023   Application of differential equations to the biological systems
JCICE 2023   2023 International Joint Conference on Information and Communication Engineering(JCICE 2023)
PoEM 2023   The Practice of Enterprise Modeling
ACM-Ei/Scopus-CWCBD 2023   2023 4th International Conference on Wireless Communications and Big Data (CWCBD 2023) -EI Compendex
CRUM @ UMAP 2023   1st Workshop on Context Representation in User Modeling
IUI 2023   Intelligent User Interfaces