posted by organizer: lionettis || 815 views || tracked by 4 users: [display]

SDAIH 2022 : IJCAI workshop on Scarce Data in Artificial Intelligence for Healthcare

FacebookTwitterLinkedInGoogle

Link: https://hslu-abiz.github.io/sdaih22/
 
When Jul 23, 2022 - Jul 25, 2022
Where Vienna
Submission Deadline May 20, 2022
Notification Due Jun 3, 2022
Final Version Due Jun 17, 2022
Categories    artificial intelligence   machine learning   healthcare
 

Call For Papers

Workshop on Scarce Data in Artificial Intelligence for Healthcare @ IJCAI / ECAI 2022

!!! Paper submission deadline extended to May 20, 2022 !!!

# Introduction

AI has the potential to generate a revolution in the field of healthcare by enabling accurate, fast and reliable analyses of data at an unprecedented scale both in the clinics and in industry. Leveraged properly, AI can thus allow to better meet patient needs by developing new medical devices, drugs, and personalized treatments, while simultaneously freeing up time for clinical staff to nourish the profound human connection between caregivers and patients. Moreover, AI promises to democratize the healthcare system by spreading basic services to low-income or remote areas through telemedicine.

Notwithstanding the terrific progress achieved in the last two decades, many AI projects related to medicine struggle to make their way to deployment and sustainable productivity because of the limited availability of high-quality annotated data. The scarcity of useful information is often exacerbated in medicine, medical engineering, and healthcare in general because labelling requires highly-specialized staff, patient privacy must be respected, ethnic differences and rare diseases adequately represented. Despite the incredible advances of the last few years in facilitating data collection and annotation, learning representations, and detecting different types of bias, basic observations on implications for practitioners are often lacking, new ingenious ideas are flourishing, and recommendations for healthcare are far from established.


# Topics of interest

Topics of interest include, but are not limited to:

- Publication of datasets relevant to healthcare including text, images, audio and structured data.
- Hardware and software tools for enabling data acquisition in low-resource or restricted environments, such as federated annotations and pseudonimization techniques.
- Tools to produce or evaluate high-quality clinical annotations and consensus diagnoses.
- Critical analysis of iterative procedures to clean up or refine annotations, as well as guidelines to assess the uncertainty on metric scores.
- Anonymization methods for intra- and inter-institutional data exchange.
- Technical solutions to work in the presence of legal concerns, for instance federated learning and i2b2.
- Works on learning representations or transfer learning with a focus on improving model generalization across different patient cohorts, data acquisition conditions, medical expert evaluations etc.
- Studies which compare or combine learning from nature with learning from human experts.
- Works on unsupervised, self-supervised, semi-supervised, or few-shot learning aimed e.g. at reducing the need for annotations by specialists.
- Methods to deal with strongly imbalanced datasets such as those including rare diseases, or very small pathological features in medical image collections.
- Strategies to handle scarcity of subsets in large datasets, i.e. “filling the gaps”.
- Works on using public or artificially-generated datasets to improve the performance of machine-learning models in healthcare or to mitigate (patient) privacy issues.
- Case studies linked to the practical deployment of AI in a clinical setting or in medical devices with limited data, as well as to the construction of pipelines or databases for addressing data scarcity.
- Insightful, original analyses of reasons for the failure of AI projects in healthcare, and work-in-progress reports of efforts related to the themes listed above.

# Submission

We welcome the submission of original research reports within the topics of interest of the workshop. The maximum length of papers is fixed to 6 pages including references. We especially encourage the contribution of case studies, work in progress, position papers, and critical analyses of failed projects.

Accepted papers will be published as proceedings in the MDPI Computer Sciences & Mathematics Forum.

Instructions for authors and LaTeX / Word templates for submissions are available at https://www.mdpi.com/journal/csmf/instructions.

Extended paper submission deadline: May 20, 2022
Decision notification: June 3, 2022
Camera-ready submission: June 17, 2022

All deadlines correspond to the end of the indicated day Anywhere on Earth (AoE).

Submit your contribution now via CMT:
https://cmt3.research.microsoft.com/SDAIH2022

Related Resources

IJCAI 2022   31st International Joint Conference on Artificial Intelligence
ICDM 2022   22nd IEEE International Conference on Data Mining
CFMAI 2022   2022 4th International Conference on Frontiers of Mathematics and Artificial Intelligence (CFMAI 2022)
NeurIPS 2022   Thirty-sixth Conference on Neural Information Processing Systems
FAIML 2022   2022 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML 2022)
ICSC 2023   IEEE International Conference on Semantic Computing
ICMLA 2022   IEEE International conference on Machine Learning and Applications
EI-CFAIS 2022   2022 International Conference on Frontiers of Artificial Intelligence and Statistics (CFAIS 2022)
Smart Cities 2022   Smart Cities: Urban Profiling with Artificial Intelligence and Big Data
ISCAI 2022   2022 4th International Symposium on Computing and Artificial Intelligence (ISCAI 2022)