posted by system || 2207 views || tracked by 4 users: [display]

MLSB 2011 : Fifth International Workshop on Machine Learning in Systems Biology

FacebookTwitterLinkedInGoogle

Link: http://mlsb11.informatik.tu-muenchen.de/index.html
 
When Jul 20, 2011 - Jul 21, 2011
Where Vienna, Austria
Submission Deadline Apr 22, 2011
Categories    machine learning   systems biology
 

Call For Papers

MLSB11, the Fifth International Workshop on Machine Learning in Systems Biology will be held in Vienna, Austria on July 20-21, 2011.

The aim of this workshop is to contribute to the cross-fertilization between the research in machine learning methods and their applications to systems biology (i.e., complex biological and medical questions) by bringing together method developers and experimentalists. We encourage submissions bringing forward methods for discovering complex structures (e.g. interaction networks, molecule structures) and methods supporting genome-wide data analysis.

The Workshop is organized as "Satellite Meeting" of the 19th Annual International Conference on Intelligent Systems for Molecular Biology (ISMB) and 10th European Conference on Computational Biology (ECCB).

Motivation

Molecular biology and all the biomedical sciences are undergoing a true revolution as a result of the emergence and growing impact of a series of new disciplines/tools sharing the "-omics" suffix in their name. These include in particular genomics, transcriptomics, proteomics and metabolomics, devoted respectively to the examination of the entire systems of genes, transcripts, proteins and metabolites present in a given cell or tissue type.
The availability of these new, highly effective tools for biological exploration is dramatically changing the way one performs research in at least two respects. First, the amount of available experimental data is not a limiting factor any more; on the contrary, there is a plethora of it. Given the research question, the challenge has shifted towards identifying the relevant pieces of information and making sense out of it (a "data mining" issue). Second, rather than focus on components in isolation, we can now try to understand how biological systems behave as a result of the integration and interaction between the individual components that one can now monitor simultaneously (so called "systems biology").

Taking advantage of this wealth of "genomic" information has become a conditio sine qua non for whoever ambitions to remain competitive in molecular biology and in the biomedical sciences in general. Machine learning naturally appears as one of the main drivers of progress in this context, where most of the targets of interest deal with complex structured objects: sequences, 2D and 3D structures or interaction networks. At the same time bioinformatics and systems biology have already induced significant new developments of general interest in machine learning, for example in the context of learning with structured data, graph inference, semi-supervised learning, system identification, and novel combinations of optimization and learning algorithms.

Molecular biology and all the biomedical sciences are undergoing a true revolution as a result of the emergence and growing impact of a series of new disciplines/tools sharing the “-omics” suffix in their name. These include in particular genomics, transcriptomics, proteomics and metabolomics, devoted respectively to the examination of the entire systems of genes, transcripts, proteins and metabolites present in a given cell or tissue type.

Related Resources

MLHMI--Ei Compendex and Scopus 2021   2021 2nd International Conference on Machine Learning and Human-Computer Interaction (MLHMI 2021)--Ei Compendex, Scopus
ICDM 2020   20th IEEE International Conference on Data Mining
AICA 2020   O'Reilly AI Conference San Jose
NeurIPS 2020   Thirty-fourth Conference on Neural Information Processing Systems
Fintech 2020   Sustainaility (Q2): Fintech: Recent Advancements in Modern Techniques, Methods and Real-World Solutions
IEEE-CVIV 2020   2020 2nd International Conference on Advances in Computer Vision, Image and Virtualization (CVIV 2020)
Recommender systems 2020   Scopus/Springer Special issue: Data Science for Next-Generation Recommender Systems with International Journal of Data Science and Analytics
MNLP 2020   4th IEEE Conference on Machine Learning and Natural Language Processing
NeuRec 2020   ICDM Workshop on Recommender Systems 2020
ICRMV--EI Compendex, Scopus 2021   2021 The 5th International Conference on Robotics and Machine Vision (ICRMV 2021)--Ei Compendex, Scopus