posted by organizer: gamato || 508 views || tracked by 2 users: [display]

Learning from Scarce Data 2022 : CBMI Special Session: Learning from scarce data challenges in the media domain

FacebookTwitterLinkedInGoogle

Link: https://cbmi2022.org/call-for-special-session-papers/
 
When Sep 14, 2022 - Sep 16, 2022
Where Graz, Austria
Submission Deadline Apr 10, 2020
Categories    artificial intelligence   learning from scarce data
 

Call For Papers

CALL FOR PAPERS:
Special session on "Learning from scarce data challenges in the media domain"
(in conjunction with CBMI 2022, September 14-16, Graz, Austria)

Website: https://cbmi2022.org/call-for-special-session-papers/
Contact: Hannes Fassold, JOANNEUM RESEARCH, hannes.fassold@joanneum.at
Paper deadline: April 10, 2022

Deep learning-based algorithms for multimedia content analysis need a large amount of annotated data for effective training, e.g., for image classification on the ImageNet dataset, each class comprises several thousand annotated samples. Having a dataset of insufficient size for training usually leads to a model which is prone to overfitting and performs poorly in practice. But in many real-world applications in multimedia content analysis, it is not possible or not viable to gather and annotate such a large training data. This may be due to the prohibitive cost of human annotation, ownership/copyright issues of the data, or simply not having enough media content of a certain kind available.

To address this issue, a lot of research has been performed in recent years on learning from scarce data/learning from limited data. There are a variety of ways to work around the problem of data scarcity like using transfer learning, domain transfer or few-shot learning.

The special session on “Learning from scarce data” aims to provide a forum for novel approaches on learning from scarce data for multimedia content analysis, with a focus on the media domain.

The topics of interest include, but are not limited to:

-Transfer learning
-Synthetic data generation
-Domain transfer/adaptation
-Semi-supervised and self-supervised learning, e.g. to take advantage of large amounts of unlabeled media archive content
-Few-shot learning (classification, object detection etc.), which is useful e.g. for adding new object classes to an automatic tagging engine for media archive content.
-Benchmarking and evaluation frameworks for content from the media domain
-Open resources, e.g., software tools for learning from scarce data in the media domain



Session Organisers:
-Dr. Giuseppe Amato, CNR-ISTI, Pisa
-Prof. Bogdan Ionescu, AI Multimedia Lab, Politehnica University of Bucharest, Romania
-Hannes Fassold, JOANNEUM RESEARCH, Graz

Related Resources

ICDM 2023   International Conference on Data Mining
JCRAI 2023-Ei Compendex & Scopus 2023   2023 International Joint Conference on Robotics and Artificial Intelligence (JCRAI 2023)
SI-MLT 2023   Special Issue on MACHINE LEARNING IN TOURISM - Int. J. of Machine Learning and Cybernetics (Springer)
JCICE 2023   2023 International Joint Conference on Information and Communication Engineering(JCICE 2023)
smart health 2023   1ST INTERNATIONAL WORKSHOP ON SMART HEALTH
CFMAI 2023   2023 5th International Conference on Frontiers of Mathematics and Artificial Intelligence (CFMAI 2023)
Complex Networks 2023   12 th International Conference on Complex Networks and their Applications
EI-CFAIS 2023   2023 International Conference on Frontiers of Artificial Intelligence and Statistics (CFAIS 2023)
VSI: AMLDFIS 2023   Special Issue of Information Fusion (Elsevier): New Trends of Adversarial Machine Learning for Data Fusion and Intelligent System
EI-ISoIRS 2023   2023 4th International Symposium on Intelligent Robotics and Systems (ISoIRS 2023)