posted by organizer: rgiot || 2410 views || tracked by 5 users: [display]

BGMV-XAI 2022 : Vis&ML for XAI - Bridging the Gap between ML and Visualization communities for eXplainable Artificial Intelligence -- Special Session of ICPRAI


When Jun 1, 2022 - Jun 3, 2022
Where Paris
Submission Deadline Jan 15, 2022
Notification Due Mar 8, 2022
Final Version Due Mar 22, 2022
Categories    XAI   visualization   machine learning   deep learning

Call For Papers

The rise of machine learning approaches, and in particular deep learning, has led to a significant increase in the performance of AI systems. However, it has also raised the question of the reliability and explicability of their predictions for decision-making (i.e., the black-box issue of the deep models). Such shortcomings also raise many ethical and political concerns that prevent wider adoption of this potentially highly beneficial technology, especially in critical areas, such as healthcare, self-driving cars or security. It is therefore critical to understand how their predictions correlate with information perception and expert decision-making. The objective of eXplainable AI (XAI) is to open this black-box by proposing methods to understand and explain how these systems produce their decisions.

Research work in XAI is currently carried out in parallel by the Machine Learning and the Information Visualization communities using methodologies and competencies from their own field. This special session hosted by the ICPRAI conference, endorsed by IAPR, is an opportunity to fill the gap between Machine Learning and Information Visualization communities and to promote new joint research paths.

Here are the main, but not limited to, topics of interest:

- Trust, Uncertainty, Fairness, Accountability and Transparency
- Explainable/Interpretable Machine Learning
- Information visualization for models or their predictions
- Interactive applications for XAI
- XAI Evaluation and Benchmarks
- Human-AI interface and interaction design
- Sample-centric and Dataset-centric explanations
- Attention mechanisms for XAI
- Pruning with XAI

We expect papers written by researchers from both communities, with a preference for works that imply a joint research (e.g., visualization experts with machine learning experts). Paper selection will be achieved by a program committee of experts in Machine Learning and experts in Information Visualization; additionally, each paper will be reviewed by at least one expert of the two communities.

Related Resources

MLDM 2023   18th International Conference on Machine Learning and Data Mining
XAI 2022   JISYS (OA) - Explainable Artificial Intelligence and Intelligent Systems in Analysis For Complex Problems and Systems
IJCNN 2023   International Joint Conference on Neural Networks
XAI_Bias_Trust@FLAIRS 2022   FLAIRS Special Track on Explainability, Bias, and Trust in Artificial Intelligence
CSML 2023   International Conference on Computer Science and Machine Learning
ACONTA 2022   First European Conference on Augmented Complex Networks - Trustworthy Analysis
FAIML 2023   2023 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML 2023)
PRAXAI @ IEEE-DSAA 2022   Practical applications of explainable artificial intelligence methods @ IEEE-DSAA22
CVPR 2023   The IEEE/CVF Conference on Computer Vision and Pattern Recognition
XAIE 2022   2-nd WS on Explainable and Ethical AI – ICPR 2022