posted by organizer: flyywh2 || 652 views || tracked by 2 users: [display]

SI in Frontiers in Signal Processing 2022 : Deep-Learning Based Image Enhancement and Compression

FacebookTwitterLinkedInGoogle

Link: https://www.frontiersin.org/research-topics/23539/deep-learning-based-image-enhancement-and-compression
 
When Mar 31, 2022 - Mar 31, 2022
Where Singapore
Abstract Registration Due Jan 9, 2022
Submission Deadline Mar 31, 2022
Categories    deep-learning   image/video enhancement   image/video compression   image/video quality assessment
 

Call For Papers

Image/video quality assessment, enhancement, and compression are fundamental topics in the low-level computer visions which have witnessed rapid progress in the last two decades. Due to various degradations in the image and video capturing, transmission, and storage, image and video might incur a series of undesirable effects, such as low resolution, low light condition, rain streak, blackness, raindrop occlusions, and high-frequency detail loss, etc. The estimation and recovery of these degradations are highly ill-posed. With the wealth of statistic-based frameworks, i.e. traditional Maximum-a-Posteriori (MAP) Estimation and Rate-distortion joint Optimization (RDO), and learning-based tools, e.g. deep networks, meta-learning, and adversarial learning, many recent deep-learning-based methods have shown their significant performance gains over traditional non-deep methods.

Existing image/video quality assessment, restoration and compression methods have remaining issues to be addressed. The challenges arise from the following aspects:
1) As enhancement/compression models are trained on the training data collected from limited scenes or occasionally synthetically generated ones, their performances might sharply degrade on real-world images and videos when there are domain gaps between real applications and training data.
2) Existing losses used for the model training are proven to be misaligned with the human vision experiences, more efforts are expected to design better measures to describe human vision experiences closely.
3) Existing methods are mainly designed for human vision. With the big data captured from smart cities and the Internet of Things, more applications expect to feed the data into machines. It would be the new critical issue to build new approaches to enhance and compress images/videos for both humans and machines.
4) Existing models include more than millions of parameters, which pose obstacles to real applications.

Topics of interest include (but are not limited to):
• Novel architectures, models, and approaches for image and video quality assessment, restoration and compression.
• Novel theories, optimization methods, training skills for training models and networks for low-level vision.
• Computationally efficient networks for image/video quality assessment, restoration and compression.
• Learned enhancement and compression models for humans and machines.
• Deep learning-based techniques that improve the performance of existing codecs and standards.
• Quality assessment methods that are well aligned to human visual perception.
• New enhancement/compression methods guided by perceptual measures or analysis tasks.
• Explainable deep learning for image/video quality assessment, restoration and compression.
• Unsupervised/semi-supervised learning methods that learn to enhance/compress images/videos with fewer labels.
• Robust methods trained with domain adaptation or elaborately designed constraint to learn from noisy labels collected from real-world data.
• Compression for compact descriptors, deep features, semantic features.
• Collaborative or Adversarial Learning for Machine Vision.
• Scalable and Distributed Architectures for Machine Vision.

Related Resources

ASPAI 2024   6th International Conference on Advances in Signal Processing and Artificial Intelligence
JCICE 2024   2024 International Joint Conference on Information and Communication Engineering(JCICE 2024)
ISoIRS 2024   2024 4th International Symposium on Intelligent Robotics and Systems (ISoIRS 2024)
AI Safety 2024   Special Issue for the Journal Frontiers in Robotics and AI on AI Safety: Safety Critical Systems
ECCV 2024   European Conference on Computer Vision
MLANN 2024   2024 2nd Asia Conference on Machine Learning, Algorithms and Neural Networks (MLANN 2024)
CVIPPR 2024   2024 2nd Asia Conference on Computer Vision, Image Processing and Pattern Recognition
EAIH 2024   Explainable AI for Health
IITUPC 2024   Immunotherapy and Information Technology: Unleashing the Power of Convergence
Springer ISPR'2024   The 4'th International Conference on Intelligent Systems and Pattern Recognition