posted by user: JianyiLin || 1477 views || tracked by 1 users: [display]

GMLR @ ACM SAC 2022 : ACM SAC Track on Graph Models for Learning and Recognition

FacebookTwitterLinkedInGoogle

Link: http://phuselab.di.unimi.it/GMLR2022
 
When Apr 25, 2022 - Apr 29, 2022
Where Brno, Czech Republic
Submission Deadline Oct 31, 2021
Notification Due Dec 10, 2021
Final Version Due Dec 21, 2021
Categories    neural networks   graphs   machine learning   computer vision
 

Call For Papers

Submission deadline EXTENDED to: October 31, 2021

CALL FOR PAPERS
===============
Graph Models for Learning and Recognition (GMLR) Track
The 37th ACM Symposium on Applied Computing (SAC 2022)
April 25-29, 2022, Brno, Czech Republic
http://phuselab.di.unimi.it/GMLR2022

MOTIVATIONS AND TOPICS
======================
The ACM Symposium on Applied Computing (SAC 2022) has been a primary gathering forum for applied computer scientists, computer engineers, software engineers, and application developers from around the world. SAC 2022 is sponsored by the ACM Special Interest Group on Applied Computing (SIGAPP), and will be held in Brno, Czech Republic. The technical track on Graph Models for Learning and Recognition (GMLR) is the first edition and is organized within SAC 2022. Graphs have gained a lot of attention in the pattern recognition community thanks to their ability to encode both topological and semantic information. Encouraged by the success of CNNs, a wide variety of methods have redefined the notion of convolution for graphs. These new approaches have in general enabled effective training and achieved in many cases better performances than competitors, though at the detriment of computational costs. Typical examples of applications dealing with graph-based representation are: scene graph generation, point clouds classification, and action recognition in computer vision; text classification, inter-relations of documents or words to infer document labels in natural language processing; forecasting traffic speed, volume or the density of roads in traffic networks, whereas in chemistry researchers apply graph-based algorithms to study the graph structure of molecules/compounds.

This track intends to focus on all aspects of graph-based representations and models for learning and recognition tasks. GMLR spans, but is not limited to, the following topics:

● Graph Neural Networks: theory and applications
● Deep learning on graphs
● Graph or knowledge representational learning
● Graphs in pattern recognition
● Graph databases and linked data in AI
● Benchmarks for GNN
● Dynamic, spatial and temporal graphs
● Graph methods in computer vision
● Human behavior and scene understanding
● Social networks analysis
● Data fusion methods in GNN
● Efficient and parallel computation for graph learning algorithms
● Reasoning over knowledge-graphs
● Interactivity, explainability and trust in graph-based learning
● Probabilistic graphical models
● Biomedical data analytics on graphs

Authors of selected top papers of this track will be asked to publish an extended version in a Special Issue of a Journal (the journal will be announced soon).

IMPORTANT DATES
===============
Submission of regular papers: EXTENDED to October 24, 2021
Notification of acceptance/rejection: December 10, 2021
Camera-ready copies of accepted papers: December 21, 2021
SAC Conference: April 25 - 29, 2022

SUBMISSION GUIDELINES
=====================
Authors are invited to submit original and unpublished papers of research and applications for this track. The author(s) name(s) and address(es) must not appear in the body of the paper, and self-reference should be in the third person. This is to facilitate double-blind review. Please, visit the website for more information about submission

SAC NO-SHOW POLICY
==================
Paper registration is required, allowing the inclusion of the paper/poster in the conference proceedings. An author or a proxy attending SAC MUST present the paper. This is a requirement for the paper/poster to be included in the ACM digital library. No-show of registered papers and posters will result in excluding them from the ACM digital library.

TRACK CHAIRS
============
Donatello Conte (University of Tours)
Giuliano Grossi (University of Milan)
Raffaella Lanzarotti (University of Milan)
Jianyi Lin (Università Cattolica del Sacro Cuore)
Jean-Yves Ramel (University of Tours)

Related Resources

GMLR @ ACM SAC 2024   ACM SAC Track on Graph Models for Learning and Recognition
ICMLA 2024   23rd International Conference on Machine Learning and Applications
Ei/Scopus-AACIP 2024   2024 2nd Asia Conference on Algorithms, Computing and Image Processing (AACIP 2024)-EI Compendex
IEEE-Ei/Scopus-SGGEA 2024   2024 Asia Conference on Smart Grid, Green Energy and Applications (SGGEA 2024) -EI Compendex
IEEE-Ei/Scopus-ACEPE 2024   2024 IEEE Asia Conference on Advances in Electrical and Power Engineering (ACEPE 2024) -Ei Compendex
SPIE-Ei/Scopus-CVCM 2024   2024 5th International Conference on Computer Vision, Communications and Multimedia (CVCM 2024) -EI Compendex
KDD 2025   31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
IEEE Big Data - MMAI 2024   IEEE Big Data 2024 Workshop on Multimodal AI (Hybrid)
ACM-Ei/Scopus-AI2A 2024   2024 4th International Conference on Artificial Intelligence, Automation and Automation (AI2A 2024) -EI Compendex
SPIE-Ei/Scopus-ITNLP 2024   2024 4th International Conference on Information Technology and Natural Language Processing (ITNLP 2024) -EI Compendex