posted by user: huimeihan_NTU || 453 views || tracked by 1 users: [display]

Federated Learning for 6G-enabled IoT 2021 : ROBUST, LOW-LATENCY AND EFFICIENT FEDERATED LEARNING FOR 6G-ENABLED INTERNET OF THINGS

FacebookTwitterLinkedInGoogle

 
When Nov 7, 2021 - Nov 11, 2021
Where Madrid, Spain
Submission Deadline Jul 31, 2021
 

Call For Papers

Internet of Things (IoT) applications, such as intelligent transportation and remote health monitoring, are poised to make incredible advances in our life. The cellular network has become the main force to support IoT services due to its extremely high capacity, security, reliability, and flexibility. To facilitate the deployment of IoT, the third-generation partnership project (3GPP) has recently issued Release 16 and 17 for cellular IoT. The next generation of cellular six-generation (6G) communication systems is expected to extend the current 5G performance to achieve lower power consumption, lower latency, higher reliability, etc., which is widely believed to be more suitable for supporting IoT and can offer a wide range of smart applications.

In the 6G-enabled IoT era, massive devices and a large amount of data are ripe for the deployment of machine learning approaches, to provide high-quality smart services. However, IoT devices do not want to share their personal data with others due to the risk of data misuse and leakage. As a distributed machine learning approach with data privacy, Federated Learning (FL) has attracted enormous attention in IoT application fields in recent years. The evolution of FL technologies has also experienced a number of challenges including convergence rate analysis, devices selection, resource allocation and etc. Various theories, optimization algorithms, and sophisticated schemes have been proposed to tackle these challenges. Once the FL technology becomes more robust, more low-latency and more efficient in the future, more applications in 6G can be benefited from FL to make the future 6G systems provide strong security. However, towards more robust, more low-latency and more efficient FL for 6G-enabled IoT, there remains much to be done.

The scope of this workshop includes but not limited to the following topics:

Scalable FL Framework for 6G-Enabled IoT
AI-Enabled Intelligent FL System
Joint Resource Allocation and Devices Selection Schemes for FL
FL for Emerging IoT Applications, e.g. Vehicular IoT, Virtual Reality (VR),UAV-Enabled Communication
Convergence Rate Analysis for FL
Federated Learning in Real-World Applications
FL Theories and Algorithms for 6G-Enabled IoT
Privacy-Preserving FL for 6G-Enabled IoT
Robust, Low-Latency and Efficient FL for 6G-Enabled IoT
Applications of FL-Based AI Approaches For 6G Wireless Communications
FL for 6G-Enabled IoT: Technologies, Adcances and Open Problem
End-Device Design for FL
Personalized FL Approaches for 6G-Enabled IoT
FL with Advanced Technologies, e.g. Massive MIMO, Intelligent Reflecting Surface (IRS)
IMPORTANT DATES
Paper Submission Deadline: July 31, 2021

Acceptance Announcement: September 15, 2021

Final Workshop Papers Due: November 15, 2021



PAPER SUBMISSION LINK: TBA


PAPER SUBMISSION GUIDELINES
The page length limit for all initial submissions for review is SIX (6) printed pages (10-point font) and must be written in English. Initial submissions longer than SIX (6) pages will be rejected without review.

All final submissions of accepted papers must be written in English with a maximum paper length of six (6) printed pages (10-point font) including figures. No more than one (1) additional printed page (10-point font) may be included in final submissions and the extra page (the 7th page) will incur an over length page charge of US$100. All final papers must be submitted to the IEEE Conference eXpress website. Please refer to the acceptance letter for the instructions on how to upload final papers.

Related Resources

SI on FTLA 2023   Special Issue on Federated and Transfer Learning Applications, Applied Sciences, MDPI
Distributed ML and Opt. 2023   Distributed Machine Learning and Optimization: Theory and Applications
IEEE COINS 2023   IEEE COINS 2023 - Berlin, Germany - July 23-25 - Hybrid (In-Person & Virtual) | Artificial Intelligence, Internet of Things (IoT), Blockchain, Big Data, Machine Learning
IEEE ICC ULMC6GN 2023   ULMC6GN: Ultra-high speed, Low-latency and Massive Communication for futuristic 6G Networks
IEEE ICA 2022   The 6th IEEE International Conference on Agents
VSI: IPMC2022 EMERGING 2022   Special Issue on Emerging Information Processing and Management Paradigms: Edge Intelligence, Federated Learning, and Blockchain
TNNLS-GL 2023   IEEE Transactions on Neural Networks and Learning Systems Special Issue on Graph Learning
AIAI 2023   Artificial Intelligence Applications and Innovations
IOTBC 2023   International Conference IOT, Blockchain and Cryptography
smart health 2023   1ST INTERNATIONAL WORKSHOP ON SMART HEALTH