posted by organizer: martcao || 2151 views || tracked by 1 users: [display]

DeepLearn Winter 2022 : 5th International School on Deep Learning


When Jan 17, 2022 - Jan 21, 2022
Where Bournemouth, UK
Submission Deadline TBD
Categories    deep learning   machine learning   artificial intelligence   data science

Call For Papers


DeepLearn 2022 Winter will be a research training event with a global scope aiming at updating participants on the most recent advances in the critical and fast developing area of deep learning. Previous events were held in Bilbao, Genova, Warsaw and Las Palmas de Gran Canaria.

Deep learning is a branch of artificial intelligence covering a spectrum of current exciting research and industrial innovation that provides more efficient algorithms to deal with large-scale data in a huge variety of different environments: computer vision, neurosciences, speech recognition, language processing, human-computer interaction, drug discovery, biomedical informatics, image analysis, recommender systems, advertising, fraud detection, robotics, games, etc. etc. Renowned academics and industry pioneers will lecture and share their views with the audience.

Most deep learning subareas will be displayed, and main challenges identified through 24 four-hour and a half courses and 3 keynote lectures, which will tackle the most active and promising topics. The organizers are convinced that outstanding speakers will attract the brightest and most motivated students. Face to face interaction and networking will be main components of the event.

An open session will give participants the opportunity to present their own work in progress in 5 minutes. Moreover, there will be two special sessions with industrial and recruitment profiles.


Graduate students, postgraduate students and industry practitioners will be typical profiles of participants. However, there are no formal pre-requisites for attendance in terms of academic degrees, so people less or more advanced in their career will be welcome as well. Since there will be a variety of levels, specific knowledge background may be assumed for some of the courses. Overall, DeepLearn 2022 Winter is addressed to students, researchers and practitioners who want to keep themselves updated about recent developments and future trends. All will surely find it fruitful to listen to and discuss with major researchers, industry leaders and innovators.


DeepLearn 2022 Winter will take place in Bournemouth, a coastal resort town on the south coast of England. The venue will be:



3 courses will run in parallel during the whole event. Participants will be able to freely choose the courses they wish to attend as well as to move from one to another.

KEYNOTE SPEAKERS: (to be completed)

Yi Ma (University of California, Berkeley), White-box Deep (Convolution) Networks from First Principles

Eric P. Xing (Carnegie Mellon University), TBA

PROFESSORS AND COURSES: (to be completed)

Peter L. Bartlett (University of California, Berkeley), [intermediate/advanced] Deep Learning: A Statistical Viewpoint

Joachim M. Buhmann (Swiss Federal Institute of Technology, Zürich), [introductory/advanced] Algorithm Validation for Data Science

Nitesh Chawla (University of Notre Dame), [introductory/intermediate] Graph Representation Learning

Charles Elkan (University of California, San Diego), [intermediate] AI and ML Applications in Finance and Retail

Rob Fergus (New York University), [intermediate/advanced] Self-supervised Learning of Visual Representations for Recognition and Interaction

João Gama (University of Porto), [introductory] Learning from Data Streams: Challenges, Issues, and Opportunities

Claus Horn (Zurich University of Applied Sciences), [intermediate] Deep Learning for Biotechnology

Nathalie Japkowicz (American University), [intermediate/advanced] Learning from Class Imbalances

Gregor Kasieczka (University of Hamburg), [introductory/intermediate] Deep Learning Fundamental Physics: Rare Signals, Unsupervised Anomaly Detection, and Generative Models

David McAllester (Toyota Technological Institute at Chicago), [intermediate/advanced] Information Theory for Deep Learning

Dhabaleswar K. Panda (Ohio State University), [intermediate] Exploiting High-performance Computing for Deep Learning: Why and How?

Tomaso Poggio (Massachusetts Institute of Technology), [advanced] Deep Learning: Theoretical Observations

Fabio Roli (University of Cagliari), [introductory/intermediate] Adversarial Machine Learning

Kunal Talwar (Apple), [introductory/intermediate] Foundations of Differentially Private Learning

Lyle Ungar (University of Pennsylvania), [intermediate] Natural Language Processing using Deep Learning

Yu-Dong Zhang (University of Leicester), [introductory/intermediate] Convolutional Neural Networks and Their Applications to COVID-19 Diagnosis


An open session will collect 5-minute voluntary presentations of work in progress by participants. They should submit a half-page abstract containing the title, authors, and summary of the research to by January 9, 2022.


A session will be devoted to 10-minute demonstrations of practical applications of deep learning in industry. Companies interested in contributing are welcome to submit a 1-page abstract containing the program of the demonstration and the logistics needed. People in charge of the demonstration must register for the event. Expressions of interest have to be submitted to by January 9, 2022.


Firms searching for personnel well skilled in deep learning will have a space reserved for one-to-one contacts. It is recommended to produce a 1-page .pdf leaflet with a brief description of the company and the profiles looked for to be circulated among the participants prior to the event. People in charge of the search must register for the event. Expressions of interest have to be submitted to by January 9, 2022.


Rashid Bakirov (Bournemouth, co-chair)
Nan Jiang (Bournemouth, co-chair)
Carlos Martín-Vide (Tarragona, program chair)
Sara Morales (Brussels)
David Silva (London, co-chair)


It has to be done at

The selection of up to 8 courses requested in the registration template is only tentative and non-binding. For the sake of organization, it will be helpful to have an estimation of the respective demand for each course. During the event, participants will be free to attend the courses they wish.

Since the capacity of the venue is limited, registration requests will be processed on a first come first served basis. The registration period will be closed and the on-line registration tool disabled when the capacity of the venue will get exhausted. It is highly recommended to register prior to the event.


Fees comprise access to all courses and lunches. There are several early registration deadlines. Fees depend on the registration deadline.


Accommodation suggestions will be available in due time at


A certificate of successful participation in the event will be delivered indicating the number of hours of lectures.



Bournemouth University

Institute for Research Development, Training and Advice – IRDTA, Brussels/London

Related Resources

Federated Learning in IOT Cybersecurity 2021   PeerJ Computer Science - Federated Learning for Cybersecurity in Internet of Things
IJCAI 2022   31st International Joint Conference on Artificial Intelligence
ICADCML 2022   3rd International Conference on Advances in Distributed Computing and Machine Learning - 2022
JCRAI 2021-Ei Compendex & Scopus 2021   2021 International Joint Conference on Robotics and Artificial Intelligence (JCRAI 2021)
XSA 2021   Explainable Deep Learning for Sentiment Analysis
ICLR 2022   The Tenth International Conference on Learning Representations
CVPR 2022   Computer Vision and Pattern Recognition
DL-ASAP 2022   Pattern Recognition Letters - Deep Learning for Acoustic Sensor Array Processing
FAIML 2022   2022 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML 2022)
AISTATS 2022   25th International Conference on Artificial Intelligence and Statistics