posted by organizer: shiqiangw || 3725 views || tracked by 3 users: [display]

EMDL 2021 : 5th International Workshop on Embedded and Mobile Deep Learning


When Jun 24, 2021 - Jun 25, 2021
Where Virtual
Submission Deadline May 7, 2021
Notification Due May 24, 2021
Categories    deep learning   mobile computing   machine learning   edge computing

Call For Papers

EMDL: 5th International Workshop on Embedded and Mobile Deep Learning

Co-located with ACM MobiSys 2021

Virtual Conference – June 2021

In recent years, breakthroughs from the field of deep learning have transformed how sensor data (e.g., images, audio, and even accelerometers and GPS) can be interpreted to extract the high-level information needed by bleeding-edge sensor-driven systems like smartphone apps and wearable devices. Today, the state-of-the-art in computational models that, for example, recognize a face, track user emotions, or monitor physical activities are increasingly based on deep learning principles and algorithms. Unfortunately, deep models typically exert severe demands on local device resources and this conventionally limits their adoption within mobile and embedded platforms. As a result, in far too many cases existing systems process sensor data with machine learning methods that have been superseded by deep learning years ago.

Because the robustness and quality of sensory perception and reasoning are so critical to mobile computing, it is critical for this community to begin the careful study of two core technical questions. First, how should deep learning principles and algorithms be applied to sensor inference problems that are central to this class of computing? This includes a combination of applications of learning some of which are familiar to other domains (such as the processing image and audio), in addition to those more uniquely tied to wearable and mobile systems (e.g., activity recognition). Second, what is required for current -- and future -- deep learning innovations to be either simplified or efficiently integrated into a variety of mobile resource-constrained systems? At heart, this MobiSys 2021 co-located workshop aims to consider these two broad themes. This year we place special focus on the emerging areas of i) resource allocation and scheduling for applying Federated Learning over embedded and mobile devices and ii) Edge-centric Learning that leverages the radical progress in Mobile Edge Computing (MEC) technologies. As such, we particularly encourage submissions on these two topics.

More specific topics of interest, include, but are not limited to:

- Resource-efficient Federated and Edge-centric Learning
- Compression of Deep Model Architectures
- Neural-based Approaches for Modeling User Activities and Behavior
- Quantized and Low-precision Neural Networks (including Binary Networks)
- Resource-efficient Federated Learning
- Mobile Vision/AR/VR supported by Convolutional and Deep Networks
- Audio Analysis and Understanding through Recurrent and Deep Architectures
- Optimizing Commodity Processors (GPUs, DSPs, NPUs, etc.) for Deep Models
- Hardware Accelerators for Deep Neural Networks
- Distributed Deep Model Training Approaches
- Applications of Deep Neural Networks with Real-time Requirements
- Deep Models of Speech and Dialog Interaction or Mobile Devices
- Partitioned Networks for Improved Cloud and Edge Offloading
- OS Support for Resource Management at Inference Time

Solicited submissions include both full technical workshop papers and white position papers. The maximum length of such submissions is 6 pages including references, and if accepted they will be published by ACM and appear in the ACM Digital Library.

* Submission Deadline: May 7, 2021 – 11:59 pm AOE (Final, no more extension)
* Author Notification: May 24th

Abstracts describing work-in-progress and demonstrations are also welcome and warmly encouraged. Submissions are limited to 2 pages, and if accepted, included in the program as a short oral presentation – but will only be published on the workshop website (not the ACM DL). Deadlines for this informal track remain open even past the early registration deadline of MobiSys 2021; author notifications will be rolling (i.e., max. of 4 days after submission) to enable early authors to take advantage of available discounts.

Workshop Organizers

PC Chairs
Ahmed M. Abdelmoniem (KAUST, Saudi Arabia)
Shaohuai Shi (HKUST, Hong Kong)
Stylianos I. Venieris (Samsung AI Center, Cambridge)
Shiqiang Wang (IBM Research, USA)

Steering Committee
Nicholas D. Lane (Univ. of Cambridge & Samsung AI, UK)
Christos Bouganis (Imperial College London, UK)
Ilias Leontiadis (Samsung AI, Cambridge, UK)
Brahim Bensaou (HKUST, Hong Kong)

Related Resources

ECCV 2024   European Conference on Computer Vision
ACM-Ei/Scopus-CCISS 2024   2024 International Conference on Computing, Information Science and System (CCISS 2024)
JCICE 2024   2024 International Joint Conference on Information and Communication Engineering(JCICE 2024)
EAIH 2024   Explainable AI for Health
IITUPC 2024   Immunotherapy and Information Technology: Unleashing the Power of Convergence
ICDM 2024   24th Industrial Conference on Data Mining
ICANN 2024   33rd International Conference on Artificial Neural Networks
EAICI 2024   Explainable AI for Cancer Imaging
AI Safety 2024   Special Issue for the Journal Frontiers in Robotics and AI on AI Safety: Safety Critical Systems
BDML 2024   5th International Conference on Big Data and Machine Learning