posted by organizer: fmarulli2021 || 2991 views || tracked by 4 users: [display]

IJCNN 2021 - FEDERATED LEARNING S.S. 2021 : Federated Learning and Cooperative Neural Networks (CoNN) Special Session - International Joint Conference on Neural Network 2021

FacebookTwitterLinkedInGoogle

Link: https://www.ijcnn.org/special-sessions-2021
 
When Jul 18, 2021 - Jul 21, 2021
Where Virtual Online Event
Submission Deadline Feb 10, 2021
Notification Due Apr 10, 2021
Final Version Due Apr 25, 2021
Categories    neural networks   federated learning   cooperative neural networks   distributed deep learning
 

Call For Papers

Federated Learning and Cooperative NN represent emerging paradigms for thinking and designing learning scenarios and Neural Networks able to exploit the growing computational capabilities of the modern distributed networks, that generating a wealth of data each day. Federated and Cooperative Learning is promising in mitigating the issues concerning privacy protection and private information sharing. It is increasingly attractive to store data locally and push network computation to the edge devices. Federated learning has emerged as a training paradigm in such settings but it raises new questions at the intersection of machine learning and systems and requires fundamental advances in privacy, large-scale machine learning, and distributed optimization areas. Federated learning and classical distributed learning share a similar goal of minimizing the empirical risk over distributed entities. However, solving this objective in the federated settings poses some fundamental challenges as Privacy Concerns, Systems Heterogeneity, Statistical Heterogeneity, Expensive Communication, Trust in Federation Membership. According to my latest experience (and inspired by the trends addressed by the most authoritative players in the AI field (Facebook AI, Google AI) and the availability of specific frameworks (cfr. TensorFlow Federated, e.g.), Federated and Cooperative Learning are among the most recent and challenging paradigm related to machine learning and to its implementations by NNs, also considering that such kinds of distributed learning systems are quite vulnerable to security attacks (data or model poisoning attacks), thus offering several open issues and multiple directions of investigation.

The IJCNN 2021 organizers and this Special Session Technical Program Committee cordially invite internationally recognized experts to propose their novel and yet unpublished contribution to this Special Sessions mainly focusing on Federated Learning and Cooperative Neural Networks issues, challenges, frontiers, current and future research and applicative directions, also extending the contributions within the general scope and topics of the main conference in both classic, contemporary, and emerging topics of interest to the Neural Networks, Machine Intelligence, Cognitive Neuroscience, Artificial Intelligence, and Data Analytics communities.
Papers submitted for special sessions will be peer-reviewed in the same way as submissions to the regular sessions for the main conference.

Related Resources

ICMLA 2024   23rd International Conference on Machine Learning and Applications
FL@FM-IJCNN 2024   IJCNN'24 Special Session on Trustworthy Federated Learning: in the Era of Foundation Models
IOTCB 2024   3rd International Conference on IOT, Cloud and Big Data
ICDM 2024   IEEE International Conference on Data Mining
ESANN 2024   32nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
DSIT 2024   2024 7th International Conference on Data Science and Information Technology (DSIT 2024)
ICONIP 2024   31st International Conference on Neural Information Processing
CCBDIOT 2024   2024 3rd International Conference on Computing, Big Data and Internet of Things (CCBDIOT 2024)
EAIH 2024   Explainable AI for Health
EPSEE 2024   2024 3rd International Conference on Advanced Electric Power System and Energy Engineering (EPSEE 2024)