posted by user: xukevin || 13036 views || tracked by 11 users: [display]

CHIL 2021 : ACM Conference on Health, Inference, and Learning

FacebookTwitterLinkedInGoogle

Link: https://www.chilconference.org/
 
When Apr 8, 2021 - Apr 10, 2021
Where Virtual
Abstract Registration Due Jan 7, 2021
Submission Deadline Jan 11, 2021
Notification Due Feb 15, 2021
Final Version Due Mar 5, 2021
Categories    healthcare   health informatics   machine learning
 

Call For Papers

The ACM Conference on Health, Inference, and Learning (CHIL) solicits work across a variety of disciplines, including machine learning, statistics, epidemiology, health policy, operations, and economics. ACM-CHIL 2021 invites submissions touching on topics focused on relevant problems affecting health. Specifically, authors are invited to submit 8-10 page papers (with unlimited pages for references) to each of the tracks described below.

To ensure that all submissions to ACM-CHIL are reviewed by a knowledgeable and appropriate set of reviewers, the conference is divided into tracks and areas of interest. Authors will select exactly one primary track and area of interest when they register their submissions, in addition to one or more sub-disciplines.

Track Chairs will oversee the reviewing process. In case you are not sure which track your submission fits under, feel free to contact the Track or Proceedings Chairs for clarification. The Proceedings Chairs reserve the right to move submissions between tracks and/or areas of interest if the Proceedings Chairs believe that a submission has been misclassified.

Important Dates
Abstracts due – January 7, 2021
Submissions due – January 11, 2021 (11:59 pm AoE)
Notification of Acceptance – Feb 12, 2021 (11:59 pm AoE)
Camera Ready Due – March 5, 2021 (11:59 pm AoE)
Conference Date – April 8-10, 2021
Tracks
Track 1: Models and Methods
Track 2: Applications and Practice
Track 3: Policy: Impact and Society
Sub-Disciplines
These are called topics in the submission form. Authors should select one or more discipline(s) in machine learning for health (ML4H) from the following list when submitting their paper: benchmark datasets, distribution shift, transfer learning, population health, social networks, scalable ML4H systems, natural language processing (NLP), computer vision, time series, bias/fairness, causality, *-omics, wearable-data, etc. Peer reviewers are assigned according to expertise in the sub-discipline(s) selected, so please choose your relevant topics carefully.

Related Resources

ICML 2022   39th International Conference on Machine Learning
MLDM 2023   18th International Conference on Machine Learning and Data Mining
CHIL 2023   AHLI Conference on Health, Inference, and Learning
IJCNN 2023   International Joint Conference on Neural Networks
smart health 2023   1ST INTERNATIONAL WORKSHOP ON SMART HEALTH
ACM-Ei/Scopus-CWCBD 2023   2023 4th International Conference on Wireless Communications and Big Data (CWCBD 2023) -EI Compendex
PAKDD 2023   The 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining
ICMHI 2023   ACM--2023 7th International Conference on Medical and Health Informatics (ICMHI 2023)
CFDSP 2023   2023 International Conference on Frontiers of Digital Signal Processing (CFDSP 2023)
MLANN 2023   2023 Asia Conference on Machine Learning, Algorithms and Neural Networks (MLANN 2023)