posted by user: lixxin || 1629 views || tracked by 56 users: [display]

KDD 2021 : 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

FacebookTwitterLinkedInGoogle


Conference Series : Knowledge Discovery and Data Mining
 
Link: https://www.kdd.org/kdd2021
 
When Aug 14, 2021 - Aug 18, 2021
Where Singapore
Submission Deadline Feb 8, 2021
Notification Due May 17, 2021
Final Version Due Jun 17, 2021
Categories    data mining
 

Call For Papers

KDD 2021 Calls for Papers and Proposals
Call for Research Track Papers | SIGKDD 2021

August 14-18th, 2021,Singapore

SIGKDD is the premier Data Science conference. We invite original technical research contributions in all aspects of the data science lifecycle including but not limited to: data cleaning and preparation, data transformation, mining, inference, learning, explainability, data privacy and dissemination of results. Technical data science contributions which advance United Nations Sustainable Development Goals (SDGs) are encouraged.

Data Cleaning and Preparation: A significant part of the data science lifecycle is spent on data cleaning and preparation. In several domains, data cleaning tasks continue to be rule-based and are often brittle, i.e., they break down in face of a constantly changing and evolving environment. Learning-based approaches for data cleaning and preparation which are generalizable and adaptive across domains are highly sought.

Data Transformation and Integration: The process of mapping data from one representation into another is at the heart of data science. The mapping can be query driven, based on a statistical task or might involve integrating data from myriad sources. We seek original contributions which address the trade-off between the complexity of the transformation and algorithmic efficiency.

Mining, Inference and Learning: These topics are the kernel of knowledge discovery from databases (KDD) paradigm and continue to witness massive growth. While classical aspects of supervised learning have been mainstreamed into the development cycle, new variations on unsupervised learning like self-supervision, few shot learning, prescriptive learning (reinforcement learning), transfer learning, meta learning and representational learning are pushing the research boundary in a world where the proportion of labeled and annotated data is becoming miniscule. In each of these topics we seek submissions which highlight the trade-off between accuracy, stability, robustness and efficiency. Submissions which propose “new” inference tasks are strongly encouraged.

Explainability: As data science models are becoming part of daily human activity there is a need, often being expressed in law, that the models be fair, interpretable and provide mechanisms to explain how a prediction or decision by the model was arrived at. Interpretable models will lead to their wider acceptance in the society at large and increase the value of Data Science as a discipline in its own right.

Data Privacy and Ethics: Data privacy or lack thereof, continues to be the achilles heel of the whole data science enterprise. We seek technical contributions that advance the state of data science methods while guaranteeing individual privacy, respect for societal norms and ethical integrity.

Model Dissemination: Migrating a data science model from a research lab to a real world deployment is non-trivial and potentially a continuous ongoing process. We seek research submissions which highlight and address technical and behavioral challenges during model deployment, feedback and upgradation.

Important Dates (Time: Anywhere on Earth)

Paper Submission: Feb 8th, 2021
Final Notification: May 17th, 2021
Camera-ready: June 17th, 2021
Presentation Slides (Required): July 12th, 2021
Conference: August 14-18, 2021

Submission Guidelines

SIGKDD is a dual track conference hosting both a Research and an Applied Data Science track. A paper should either be submitted to the Research or the Applied Science track but not both. Research track submissions are limited to nine (9 pages), including references, must be in PDF and use ACM Conference Proceeding templates. An additional two pages of supplemental material focused on reproducibility can be provided. Additionally proofs and pseudo-code that could not be included in the main nine-page manuscript may also be included in the two-page supplement.

Template guidelines are here: https://www.acm.org/publications/proceedings-template.

Papers submitted to SIGKDD follow a double-blind review process. Every effort must be made to preserve the anonymity of the authors. Papers that have been presented as technical reports with listed authors will not be considered for reviewing. An exception to the rule are the papers that have been submitted to arXiv at least one month prior to the deadline (January 8th, 2021). Authors can submit these papers but with a different title and abstract. Papers that appear in arXiv after Jan 8th, 2021 until the end of the review process will not be accepted.

Conference Submission Website: https://cmt3.research.microsoft.com/KDD2021

Program Chairs

Wynee Hsu, National University of Singapore

Sanjay Chawla, Qatar Computing Research Institute

Related Resources

ICDM 2021   21th Industrial Conference on Data Mining
KDD 2020   KDD 2020
ACM--ICKIM--EI Compendex, Scopus 2021   ACM--2021 The 3rd International Conference on Knowledge and Information Management (ICKIM 2021)--EI Compendex, Scopus
MLDM 2021   17th International Conference on Machine Learning and Data Mining
ACM--CCIOT--EI, Scopus 2021   ACM--2021 6th International Conference on Cloud Computing and Internet of Things (CCIOT 2021)--Ei Compendex, Scopus
CBDA 2021   2nd International Conference on Big Data
ICKIM--ACM, EI Compendex, Scopus 2021   ACM--2021 The 3rd International Conference on Knowledge and Information Management (ICKIM 2021)--EI Compendex, Scopus
ICSRS--Scopus & EI Compendex 2021   2021 5th International Conference on System Reliability and Safety (ICSRS 2021)--Scopus & EI Compendex
Scopus-DIKW-RA 2021   2021 Future Data, Information and Knowledge Research and Applications Conference (DIKW-RA 2021)
SCOPUS-CMVIT 2021   5th International Conference on Machine Vision and Information Technology (CMVIT 2021)