posted by user: 786121244 || 4402 views || tracked by 7 users: [display]

Recommender systems 2021 : SN Computer Science Call for Papers: Topical Issue on Advanced Theories and Algorithms for Next-generation Recommender Systems

FacebookTwitterLinkedInGoogle

Link: https://resource-cms.springernature.com/springer-cms/rest/v1/content/18491852/data/v6
 
When N/A
Where N/A
Submission Deadline Dec 31, 2020
Notification Due May 20, 2021
Final Version Due Jun 20, 2021
Categories    recommender systems   user modelling   machine learning   recommendations
 

Call For Papers

Recommender systems have become one of the most important and practical applications of artificial intelligence (AI). In the era of digital economy, recommender systems are becoming increasingly popular and have been planted in nearly every corner of our daily life including online shopping, route planning, precision health, etc. However, facing the complex and uncertain real-world scenarios, the existing recommender systems have shown their limitations in fulfilling the users’ requirements, such as the lack of robustness in handling noise data and attacks, and their inability to interact with users and to explain the recommendations. To this end, it is necessary to develop next-generation recommender systems, e.g., trustworthy, conversational and explainable recommender systems, by substantially taking the advantages of the powerful AI theories and techniques. On the one hand, next-generation recommender systems are not only more robust when facing the noisy data and shilling attacks, but are also more user-friendly by providing better interaction, conversation with the end-users as well as good explanations of the recommendation results; on the other hand, the deep learning dominated AI techniques have shown great potential in dealing with various kinds of complex data as well as modelling and predicting users’ complex behaviors. Naturally, AI-enabled next-generation recommender systems are one of the most promising directions in computer science.

This topical issue aims to collect the most recent theoretical and practical advances in recommender systems, including cutting-edge theories, foundations and learning systems as well as actionable tools and impactful case studies of next-generation recommender systems, supported by advanced AI and machine learning techniques. Those theories and algorithms that focus on the particular issues in recommender systems, including interaction, preference elicitation, privacy, trust, accountability, emotions/personality etc. are particularly welcome.

• the tentative date of paper submission: 31 December 2021
• Submission Deadline: 2022 09 30

Related Resources

SPIE-Ei/Scopus-DMNLP 2025   2025 2nd International Conference on Data Mining and Natural Language Processing (DMNLP 2025)-EI Compendex&Scopus
IEEE-Ei/Scopus-SGGEA 2024   2024 Asia Conference on Smart Grid, Green Energy and Applications (SGGEA 2024) -EI Compendex
ACM SAC 2025   40th ACM/SIGAPP Symposium On Applied Computing
WCSE--EI 2025   2025 The 15th International Workshop on Computer Science and Engineering (WCSE 2025)
Ei/Scopus-ACAI 2024   2024 7th International Conference on Algorithms, Computing and Artificial Intelligence(ACAI 2024)
I4CS 2025   25th International Conference on Innovations for Community Services
Ei/Scopus-CISDS 2024   2024 3rd International Conference on Communications, Information System and Data Science (CISDS 2024)
ICISIP 2025   The 12th IIAE International Conference on Intelligent Systems and Image Processing 2025
SmartMultimedia 2025   International Conference on SMART MULTIMEDIA
RTEE 2024   10th International Conference on Recent Trends in Electrical Engineering