posted by user: program1011 || 1729 views || tracked by 2 users: [display]

Frontiers in Genetics 2021 : Research Topic - Machine Intelligence in Single-Cell Data Analysis: Advances and New Problems

FacebookTwitterLinkedInGoogle

Link: https://www.frontiersin.org/research-topics/15609/machine-intelligence-in-single-cell-data-analysis-advances-and-new-problems
 
When N/A
Where N/A
Submission Deadline Dec 20, 2020
Categories    machine learning   deep learning   bioinformatics
 

Call For Papers

About this Research Topic
With recent increase of biomedical data generated from high-throughput single-cell technologies, there is an inevitable need for machine intelligence methods to address problems in the analysis of single-cell data. Several methods have been used in machine intelligence mainly drawn from machine learning and deep learning to address several tasks pertaining to single-cell data. However, most existing tools in these tasks are far from perfect and mostly deal with second-order tensor data represented as a matrix. Recently, an unsupervised-tensor-based method dealing with high-order tensor data has been utilized to integrate profiles of two-different species and find biologically reliable genes related to brain function and diseases. Such genes could be possibly used as biomarkers in disease identification.

This research topic aims to bring state-of-the-art research contributions in machine intelligence to address new problems and improve over existing tasks using single-cell data. Submitted articles will be evaluated based on their quality and relevance to the research topic.

Accordingly, we welcome machine-intelligence related submissions, but not limited to the following:
· Data-Driven Approaches Based on Tensor Data
· Supervised Tensor Learning
· Semi-Supervised Tensor Learning
· Deep Learning
· Machine Learning

Re-analysis of existing genomic, transcriptomic data which attempts to identify a candidate set of diagnostic or prognostic markers for disease will not be considered for review, unless they are either (1) provided via novel machine intelligence methods or (2) extended to provide meaningful insights into gene/protein function and/or the biology of the subject described. Studies relating to the prediction of clinical outcome require some validation of findings


Keywords: Single-Cell Data, Cellular Biology, Tensor Data, Machine Learning, Artificial Intelligence


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors
* Turki Turki, Department of Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia. Contact Email: tturki@kau.edu.sa
* Y-h. Taguchi, Department of Physics, Chuo University, Tokyo, Japan. Contact Email: tag@granular.com

Related Resources

IARCE 2021-Ei Compendex & Scopus 2021   2021 5th International Conference on Industrial Automation, Robotics and Control Engineering (IARCE 2021)
ICDM 2021   21th Industrial Conference on Data Mining
Frontiers - Human-Media Interaction 2021   Frontiers Research Topic on Computational Commensality
MLDM 2021   17th International Conference on Machine Learning and Data Mining
FAIML 2021   2021 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML 2021)
CiVEJ 2020   Civil Engineering and Urban Planning: An International Journal
SI-DAMLE 2020   Special Issue on Data Analytics and Machine Learning in Education
CFDSP 2021   2021 International Conference on Frontiers of Digital Signal Processing (CFDSP 2021)
TSD 2021   The twenty-fourth International Conference on Text, Speech and Dialogue (TSD 2021).
CMMM 2020   Special Issue on Machine Learning Applications in Single-Cell RNA Sequencing Data