posted by organizer: ecelebi || 3110 views || tracked by 2 users: [display]

IMAVIS-ADACV 2021 : Image and Vision Computing Special Issue on Advances in Domain Adaptation for Computer Vision

FacebookTwitterLinkedInGoogle

Link: https://www.journals.elsevier.com/image-and-vision-computing/call-for-papers/advances-in-domain-adaptation-for-computer-vision
 
When N/A
Where N/A
Submission Deadline Nov 2, 2020
Notification Due Mar 31, 2021
Categories    computer vision   machine learning   domain adaptation   transfer learning
 

Call For Papers


Aim and Scope:

In daily routines, humans, not only learn and apply knowledge for visual tasks but also have intrinsic abilities to transfer knowledge between related vision tasks. For example, if a new vision task is relevant to any previous learning, it is possible to transfer the learned knowledge for handling the new vision task. In developing new computer vision algorithms, it is desired to utilize these capabilities to make the algorithms adaptable. Generally, traditional computer vision methods do not adapt to a new task and have to learn the new task from the beginning. These methods do not consider that the two visual tasks may be related and the knowledge gained in one may be applied to learn the other one efficiently in lesser time. Domain adaptation for computer vision is the area of research, which attempts to mimic this human behavior by transferring the knowledge learned in one or more source domains and use it for learning the related visual processing task in the target domain. Recent advances in domain adaptation, particularly in cotraining, transfer learning, and online learning have benefited computer vision research significantly. For example, learning from high-resolution source domain images and transferring the knowledge to learning low-resolution target domain information. This special issue will focus on the recent advances in domain adaptation for different computer vision tasks.

Topics of interest include, but are not limited to:

· Domain adaptation for machine learning frameworks for learning deep representations
· Domain adaptation for face detection/recognition and tracking
· Domain adaptation for object detection/ recognition and tracking
· Domain adaptation and hybrid models for real-time computer vision tasks
· Domain adaptation for human pose detection/recognition and estimation
· Domain adaptation for event/action detection and recognition
· Domain adaptation for few-shot learning
· Domain adaptation for deep neural network optimization

Important Dates:

Paper submission due: November 2, 2020
Revision submission due: January 31, 2021
Final decision: March 31, 2021

Paper evaluation and submission:

Submitted papers should present original, unpublished work, relevant to one of the topics of the Special Issue. All submitted papers will be evaluated on the basis of relevance, the significance of contribution, technical quality, and quality of presentation, by at least two independent reviewers (the papers will be reviewed following standard peer-review procedures of the Journal). Each paper will be reviewed rigorously and possibly in two rounds. Prospective authors should follow the formatting and Instructions of Image and Vision Computing at https://www.elsevier.com/journals/image-and-vision-computing/0262-8856/guide-for-authors, and invited to submit their papers directly via the online submission system at https://www.editorialmanager.com/IMAVIS/default.aspx. When submitting your manuscript please select the article type "VSI: Advances in Domain Adaptation for Computer Vision (ADACV)" Please submit your manuscript before the submission deadline. https://www.journals.elsevier.com/image-and-vision-computing/call-for-papers/advances-in-domain-adaptation-for-computer-vision

Guest Editors:

Dr. Pourya Shamsolmoali
Institute of Image Processing & Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China.
Email: pshams@sjtu.edu.cn

Prof. Salvador García
Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain.
Email: salvagl@decsai.ugr.es

Prof. Huiyu Zhou
Department of Informatics, University of Leicester, Leicester, UK.
Email: hz143@leicester.ac.uk

Prof. M. Emre Celebi
Department of Computer Science, University of Central Arkansas, Conway, Arkansas, USA.
Email: ecelebi@uca.edu

Related Resources

CVPR 2024   The IEEE/CVF Conference on Computer Vision and Pattern Recognition
ICAISC 2024   International Conference on Artificial Intelligence and Soft Computing
JCICE 2024   2024 International Joint Conference on Information and Communication Engineering(JCICE 2024)
AAISS 2023   Special Issue on Advances in Artificial Intelligent Systems for the Scholarly Domain
IEEE Big Data - MMAI 2023   IEEE Big Data 2023 Workshop on Multimodal AI (Hybrid)
ICANN 2024   33rd International Conference on Artificial Neural Networks
ESCI 2024   6th IEEE International Conference on Emerging Smart Computing and Informatics
IEEE Xplore-Ei/Scopus-DMCSE 2023   2023 International Conference on Data Mining, Computing and Software Engineering (DMCSE 2023) -EI Compendex
CCGIV 2023   2023 6th International Conference on Computer Graphics, Image and Visualization (CCGIV 2023)
ICMIP 2024   ACM--2024 9th International Conference on Multimedia and Image Processing (ICMIP 2024)