posted by user: lims1 || 3165 views || tracked by 5 users: [display]

MLHPC 2020 : 6th Workshop on Machine Learning in High Performance Computing Environments

FacebookTwitterLinkedInGoogle

Link: https://ornlcda.github.io/MLHPC2020/
 
When Nov 12, 2020 - Nov 12, 2020
Where Virtual location
Submission Deadline Sep 18, 2020
Notification Due Sep 28, 2020
Final Version Due Oct 6, 2020
Categories    machine learning   HPC   supercomputer   data analytics
 

Call For Papers

6th Workshop on Machine Learning in HPC Environments (MLHPC'20)
Held in conjunction with SC20: The International Conference on High Performance Computing, Networking, Storage and Analysis

Virtual location November 12, 2020

https://ornlcda.github.io/MLHPC2020

Submission Deadline: September 18, 2020
================================================================

The intent of this workshop is to bring together researchers, practitioners, and scientific communities to discuss methods that utilize extreme scale systems for machine learning. This workshop will focus on the greatest challenges in utilizing HPC for machine learning and methods for exploiting data parallelism, model parallelism, ensembles, and parameter search. We invite researchers and practitioners to participate in this workshop to discuss the challenges in using HPC for machine learning and to share the wide range of applications that would benefit from HPC powered machine learning.

In recent years, the models and data available for machine learning (ML) applications have grown dramatically. High performance computing (HPC) offers the opportunity to accelerate performance and deepen understanding of large data sets through machine learning. Current literature and public implementations focus on either cloud-­‐based or small-­‐scale GPU environments. These implementations do not scale well in HPC environments due to inefficient data movement and network communication within the compute cluster, originating from the significant disparity in the level of parallelism. Additionally, applying machine learning to extreme scale scientific data is largely unexplored. To leverage HPC for ML applications, serious advances will be required in both algorithms and their scalable, parallel implementations.

Topics will include but will not be limited to:

- Machine learning models, including deep learning, for extreme scale systems
- Enhancing applicability of machine learning in HPC (e.g. feature engineering, usability)
- Learning large models/optimizing hyper parameters (e.g. deep learning, representation learning)
- Facilitating very large ensembles in extreme scale systems
- Training machine learning models on large datasets and scientific data
- Overcoming the problems inherent to large datasets (e.g. noisy labels, missing data, scalable ingest)
- Applications of machine learning utilizing HPC
- Future research challenges for machine learning at large scale.
- Large scale machine learning applications

Authors are invited to submit full papers with unpublished, original work of 8-12 pages. Submissions will be subject to a double blind peer review process. Submissions will be selected to include both application focused work utilizing ML and HPC and novel methods enabling ML on HPC. All papers should be formatted using the IEEE conference format. In support of the SC reproducibilty initiative, we also encourage authors to include reproduciblity appendices: https://sc20.supercomputing.org/submit/transparency-reproducibility-initiative/

All accepted papers (subject to post-review revisions) will be published in the IEEE Xplore library by IEEE TCHPC. Papers will be submitted through the main SC submissions page https://submissions.supercomputing.org.

This workshop is being held at SC20. http://sc20.supercomputing.org/

For more information, visit the workshop website at: https://ornlcda.github.io/MLHPC2020

Related Resources

IARCE 2021-Ei Compendex & Scopus 2021   2021 5th International Conference on Industrial Automation, Robotics and Control Engineering (IARCE 2021)
ISC HPC 2021   ISC HIGH PERFORMANCE 2021 DIGITAL
ICML 2021   International Conference on Machine Learning
ICMLA 2021   20th IEEE International Conference on Machine Learning and Applications
CFDSP 2021   2021 International Conference on Frontiers of Digital Signal Processing (CFDSP 2021)
ML_BDA 2021   Special Issue on Machine Learning Technologies for Big Data Analytics
UAI 2021   37th Conference on Uncertainty in Artificial Intelligence
FAIML 2021   2021 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML 2021)
blockchain_ml_iot 2021   Special Issue - Blockchain and Machine Learning for IoT: Security and Privacy Challenges
VSI: Expert DM 2020   Applied Soft Computing: Special Issue on Expert Decision Making for Data Analytics with Applications