posted by user: shiqiangw || 3665 views || tracked by 8 users: [display]

AIChallengeIoT 2020 : International Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things (in conjunction with ACM SenSys)

FacebookTwitterLinkedInGoogle

Link: https://aichallengeiot.github.io/
 
When Nov 16, 2020 - Nov 16, 2020
Where Virtual
Submission Deadline Sep 20, 2020
Notification Due Oct 9, 2020
Final Version Due Oct 16, 2020
Categories    artificial intelligence   machine learning   internet of things   edge computing
 

Call For Papers

The 2nd International Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things (AIChallengeIoT 2020) will be held in conjunction with ACM SenSys 2020 on November 16, 2020.

Artificial intelligence (AI) and machine learning (ML) are key enabling technologies for many Internet of Things (IoT) applications. However, the collection and processing of data for AI and ML is very challenging in the IoT domain. For example, there are usually a large number of low-powered sensors deployed in large geographical areas with possibly intermittent network connectivity. The sensors and their collected data may be owned by different users or organizations, which can bring further obstacles to data collection due to privacy concerns and noisy labels provided by different users. The successful application of AI/ML approaches in such scenarios with noisy and decentralized data is difficult. In addition, the amount of collected data that can be used for training AI/ML models is usually proportional to the number of users in the system, but the system may not be able to attract many users without a well-trained AI/ML model, and it is challenging to solve this dilemma.

This workshop focuses on how to address the above and other unique challenges of applying AI/ML in IoT systems.

We invite researchers and practitioners to submit papers describing original work, experiences, or vision related to the entire lifecycle of an IoT system powered by AI and ML, including (but not limited to) the following topics:

- AI/ML in multi-agent, distributed, and decentralized settings
- AI/ML on low-powered and/or intermittently connected devices
- AI/ML with noisy and possibly adversarial data and labels
- Algorithms and techniques for evolving from a new system that is initially trained with only a small amount of data
- Algorithms and techniques for making use of data collected by geographically dispersed sensors to provide useful services through AI/ML
- Algorithms and techniques for reducing human effort in data labeling, including active learning
- Algorithms and techniques for sharing data and training AI/ML models while preserving user sensitive information, including federated learning
- Design and implementation of AI/ML-powered IoT systems
- Hardware, software, and tools for AI/ML in IoT
- IoT applications enabled by AI/ML
- Privacy and security of AI/ML in IoT

Submissions focusing on specific IoT applications and generic IoT systems are both welcome. We specifically encourage papers with forward-looking ideas that may initiate new research directions. We solicit the following types of submissions:

- Regular papers describing novel research work or experiences, up to 6 pages including figures and tables, but not including references (references can use additional pages as needed), which will be presented at the workshop as oral presentation
- Vision/position papers describing new research directions and challenges, up to 4 pages including figures, tables, and references, which will be presented at the workshop as a short oral presentation followed by interactive discussions

Submitted papers should be previously unpublished and not currently under review by another conference or journal. All accepted regular papers and vision/position papers will be published in the conference proceedings and the ACM Digital Library.

All submissions should use the double column ACM proceedings format. The ACM template is available at: https://www.acm.org/publications/proceedings-template. LaTeX submissions should use the acmart.cls template (sigconf option), with the default 9-pt font. This format will be used also for the camera-ready version of accepted regular and vision/position papers. The submissions should include authors’ names and affiliations (i.e., not be double-blind). Submissions will be reviewed by the program committee for novelty, relevance, and quality. At least one of the authors of every accepted paper/presentation must register and present the work at the workshop. Submissions should be in Adobe Portable Document Format (PDF).

The link for submission is: https://aichallengeiot20.hotcrp.com/


Important Dates

Paper Submission: September 18, 2020 (11:59 pm anywhere on earth (UTC -12))
Notification of Paper Acceptance: October 9, 2020
Camera-Ready: October 16, 2020
Workshop date: November 16, 2020


Organizing committee

Shiqiang Wang (IBM T. J. Watson Research Center, USA)
Poonam Yadav (University of York, UK)
Ludmila (Lucy) Cherkasova (ARM Research, USA)
Valerie Liptak (Amazon, USA)
Jorge Ortiz (Rutgers University, USA)
Shaswot Shresthamali (The University of Tokyo)
Mani Srivastava (University of California, Los Angeles, USA)
Vinesh Sukumar (Intel, USA)

Related Resources

IJCAI 2021   30th International Joint Conference on Artificial Intelligence
SI-DAMLE 2020   Special Issue on Data Analytics and Machine Learning in Education
AICA 2020   O'Reilly AI Conference San Jose
ICDM 2021   21th Industrial Conference on Data Mining
SCOPUS-PRIS 2021   3rd International Conference on Pattern Recognition and Intelligent Systems (PRIS 2021)
MLDM 2021   17th International Conference on Machine Learning and Data Mining
IoTE 2020   International Conference on Internet of Things & Embedded Systems
Int Sys Edu 2021   Special Issue on Advances in Intelligent Systems for Online Education - Future Generation Computer Systems (I.F. 6.125)
SCAI 2020   9th International Conference on Soft Computing, Artificial Intelligence and Applications
Scopus-BDAI 2020   2020 International Conference on Industrial Applications of Big Data and Artificial Intelligence (BDAI 2020)